These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 36317380)

  • 21. A bio-inspired study on tidal energy extraction with flexible flapping wings.
    Liu W; Xiao Q; Cheng F
    Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of wing damage and moult gaps on vertebrate flight performance.
    Hedenström A
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37132410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconstructing full-field flapping wing dynamics from sparse measurements.
    Johns W; Davis L; Jankauski M
    Bioinspir Biomim; 2020 Nov; 16(1):016005. PubMed ID: 33164917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An at-scale tailless flapping wing hummingbird robot: II. Flight control in hovering and trajectory tracking.
    Fei F; Tu Z; Deng X
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 30. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of outer wing separation on lift and thrust generation in a flapping wing system.
    Mahardika N; Viet NQ; Park HC
    Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
    Bergou AJ; Swartz SM; Vejdani H; Riskin DK; Reimnitz L; Taubin G; Breuer KS
    PLoS Biol; 2015; 13(11):e1002297. PubMed ID: 26569116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of spanwise flexibility on the performance of flapping flyers in forward flight.
    Kodali D; Medina C; Kang CK; Aono H
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29167372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired morphing wings: mechanical design and wind tunnel experiments.
    Kilian L; Shahid F; Zhao JS; Nayeri CN
    Bioinspir Biomim; 2022 Jul; 17(4):. PubMed ID: 35609562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effect of Spanwise Folding on the Aerodynamic Performance of a Passively Deformed Flapping Wing.
    Qi M; Ding M; Zhu W; Li S
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot.
    Truong NT; Phan HV; Park HC
    Bioinspir Biomim; 2019 Mar; 14(3):036010. PubMed ID: 30658344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental analysis of the sweepback angle effect on the thrust generation of a robotic penguin wing.
    Shen Y; Tanaka H
    Bioinspir Biomim; 2023 Feb; 18(2):. PubMed ID: 36669204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.