These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36317664)

  • 21. Wing serial homologs and the origin and evolution of the insect wing.
    Ohde T; Yaginuma T; Niimi T
    Zoology (Jena); 2014 Apr; 117(2):93-4. PubMed ID: 24360127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nymphalid eyespots are co-opted to novel wing locations following a similar pattern in independent lineages.
    Schachat SR; Oliver JC; Monteiro A
    BMC Evol Biol; 2015 Feb; 15():20. PubMed ID: 25886182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards an evolutionary history of European-Alpine Trechus ground beetles: Species groups and wing reduction.
    Möst MH; Donabauer M; Arthofer W; Schlick-Steiner BC; Steiner FM
    Mol Phylogenet Evol; 2020 Aug; 149():106822. PubMed ID: 32294546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Embryonic origin and serial homology of gill arches and paired fins in the skate,
    Sleight VA; Gillis JA
    Elife; 2020 Nov; 9():. PubMed ID: 33198887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9-based heritable targeted mutagenesis in Thermobia domestica: A genetic tool in an apterygote development model of wing evolution.
    Ohde T; Takehana Y; Shiotsuki T; Niimi T
    Arthropod Struct Dev; 2018 Jul; 47(4):362-369. PubMed ID: 29908341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroevolutionary Analyses Provide New Evidence of Phasmid Wings Evolution as a Reversible Process.
    Forni G; Martelossi J; Valero P; Hennemann FH; Conle O; Luchetti A; Mantovani B
    Syst Biol; 2022 Oct; 71(6):1471-1486. PubMed ID: 35689634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alternative models for the evolution of eyespots and of serial homology on lepidopteran wings.
    Monteiro A
    Bioessays; 2008 Apr; 30(4):358-66. PubMed ID: 18348192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Starting from fins: parallelism in the evolution of limbs and genitalia. The fin-to-limb transition.
    Burke AC; Rosa-Molinar E
    Evol Dev; 2002; 4(5):375-7. PubMed ID: 12356267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscles of chondrichthyan paired appendages: comparison with osteichthyans, deconstruction of the fore-hindlimb serial homology dogma, and new insights on the evolution of the vertebrate neck.
    Diogo R; Ziermann JM
    Anat Rec (Hoboken); 2015 Mar; 298(3):513-30. PubMed ID: 25205543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures.
    Tomoyasu Y
    Curr Opin Genet Dev; 2021 Aug; 69():48-55. PubMed ID: 33647834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait.
    Shirai LT; Saenko SV; Keller RA; Jerónimo MA; Brakefield PM; Descimon H; Wahlberg N; Beldade P
    BMC Evol Biol; 2012 Feb; 12():21. PubMed ID: 22335999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings.
    Clark-Hachtel CM; Tomoyasu Y
    Nat Ecol Evol; 2020 Dec; 4(12):1694-1702. PubMed ID: 32747770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and evolution of the stigmapophysis-A unique repose wing-coupling structure in Psocodea.
    Ogawa N; Yoshizawa K
    Arthropod Struct Dev; 2018 Jul; 47(4):416-422. PubMed ID: 29932971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the origin of insect wings from an evo-devo perspective.
    Clark-Hachtel CM; Tomoyasu Y
    Curr Opin Insect Sci; 2016 Feb; 13():77-85. PubMed ID: 27436556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The phylogeny of brown lacewings (Neuroptera: Hemerobiidae) reveals multiple reductions in wing venation.
    Garzón-Orduña IJ; Menchaca-Armenta I; Contreras-Ramos A; Liu X; Winterton SL
    BMC Evol Biol; 2016 Sep; 16():192. PubMed ID: 27645380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary origin and functioning of pregenital abdominal outgrowths in a viviparous insect, Arixenia esau.
    Tworzydlo W; Jaglarz MK; Pardyak L; Bilinska B; Bilinski SM
    Sci Rep; 2019 Nov; 9(1):16090. PubMed ID: 31695096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From descent with modification to the origins of novelty.
    Linz DM; Hu Y; Moczek AP
    Zoology (Jena); 2020 Dec; 143():125836. PubMed ID: 32911265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insect morphological diversification through the modification of wing serial homologs.
    Ohde T; Yaginuma T; Niimi T
    Science; 2013 Apr; 340(6131):495-8. PubMed ID: 23493422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative anatomy, evolution, and homologies of tetrapod hindlimb muscles, comparison with forelimb muscles, and deconstruction of the forelimb-hindlimb serial homology hypothesis.
    Diogo R; Molnar J
    Anat Rec (Hoboken); 2014 Jun; 297(6):1047-75. PubMed ID: 24729440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in the selection response of serially repeated color pattern characters: standing variation, development, and evolution.
    Allen CE; Beldade P; Zwaan BJ; Brakefield PM
    BMC Evol Biol; 2008 Mar; 8():94. PubMed ID: 18366752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.