BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36317750)

  • 1. Polyethyleneimine-capped copper nanoclusters for detection and discrimination of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol.
    Wu H; Wang G; Cai Z; Li D; Xiao F; Lei D; Dai Z; Dou X
    Anal Methods; 2022 Nov; 14(44):4485-4494. PubMed ID: 36317750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethyleneimine-protected silver cluster for label-free and highly selective detection of 2,4,6-trinitrotoluene.
    Li Q; Guo YM; Gao Y; Li G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121224. PubMed ID: 35397448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters.
    Deng X; Huang X; Wu D
    Anal Bioanal Chem; 2015 Jun; 407(16):4607-13. PubMed ID: 25893800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium.
    Harathi J; Thenmozhi K
    Chemosphere; 2022 Jan; 286(Pt 2):131825. PubMed ID: 34375830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots.
    Şen FB; Beğiç N; Bener M; Apak R
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120884. PubMed ID: 35051797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters.
    Li H; Chang J; Hou T; Ge L; Li F
    Talanta; 2016 Nov; 160():475-480. PubMed ID: 27591641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene.
    Xu S; Lu H; Li J; Song X; Wang A; Chen L; Han S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8146-54. PubMed ID: 23876063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism.
    Şen FB; Bener M; Apak R
    J Fluoresc; 2021 Jul; 31(4):989-997. PubMed ID: 33880706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters.
    Ling Y; Zhang N; Qu F; Wen T; Gao ZF; Li NB; Luo HQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():315-20. PubMed ID: 24055680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diaminocyclohexane-Functionalized/Thioglycolic Acid-Modified Gold Nanoparticle-Based Colorimetric Sensing of Trinitrotoluene and Tetryl.
    Ular N; Üzer A; Durmazel S; Erçağ E; Apak R
    ACS Sens; 2018 Nov; 3(11):2335-2342. PubMed ID: 30350589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.
    Ma Y; Li H; Peng S; Wang L
    Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective detection of 2,4,6-trinitrophenol based on a fluorescent nanoscale bis(8-hydroxyquinoline) metal complex.
    Lv XJ; Qi L; Gao XY; Wang H; Huo Y; Zhang ZQ
    Talanta; 2016 Apr; 150():319-23. PubMed ID: 26838414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene.
    Shankaran DR; Gobi KV; Sakai T; Matsumoto K; Toko K; Miura N
    Biosens Bioelectron; 2005 Mar; 20(9):1750-6. PubMed ID: 15681190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters.
    Zhang JR; Yue YY; Luo HQ; Li NB
    Analyst; 2016 Feb; 141(3):1091-7. PubMed ID: 26661456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive resonance light scattering bioassay for heparin based on polyethyleneimine-capped Ag nanoclusters.
    Tang Y; Zhang Y; Su Y; Lv Y
    Talanta; 2013 Oct; 115():830-6. PubMed ID: 24054670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene.
    Chen Y; Chen Z; He Y; Lin H; Sheng P; Liu C; Luo S; Cai Q
    Nanotechnology; 2010 Mar; 21(12):125502. PubMed ID: 20203361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyaniline-based photothermal paper sensor for sensitive and selective detection of 2,4,6-trinitrotoluene.
    Huang S; He Q; Xu S; Wang L
    Anal Chem; 2015 May; 87(10):5451-6. PubMed ID: 25916554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive Naked Eye and Autofluorescence Detection of Cu(2+) in Biological Fluids by Polyethyleneimine Microspheres.
    Yan D; Deng C; He Y; Ge Y; Song G
    J Fluoresc; 2016 Sep; 26(5):1763-72. PubMed ID: 27349800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.
    Qu F; Zou X; Kong R; You J
    Talanta; 2016; 146():549-55. PubMed ID: 26695303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles.
    Lin D; Liu H; Qian K; Zhou X; Yang L; Liu J
    Anal Chim Acta; 2012 Sep; 744():92-8. PubMed ID: 22935379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.