These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36317750)

  • 1. Polyethyleneimine-capped copper nanoclusters for detection and discrimination of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol.
    Wu H; Wang G; Cai Z; Li D; Xiao F; Lei D; Dai Z; Dou X
    Anal Methods; 2022 Nov; 14(44):4485-4494. PubMed ID: 36317750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethyleneimine-protected silver cluster for label-free and highly selective detection of 2,4,6-trinitrotoluene.
    Li Q; Guo YM; Gao Y; Li G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121224. PubMed ID: 35397448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters.
    Deng X; Huang X; Wu D
    Anal Bioanal Chem; 2015 Jun; 407(16):4607-13. PubMed ID: 25893800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium.
    Harathi J; Thenmozhi K
    Chemosphere; 2022 Jan; 286(Pt 2):131825. PubMed ID: 34375830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots.
    Şen FB; Beğiç N; Bener M; Apak R
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120884. PubMed ID: 35051797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters.
    Li H; Chang J; Hou T; Ge L; Li F
    Talanta; 2016 Nov; 160():475-480. PubMed ID: 27591641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene.
    Xu S; Lu H; Li J; Song X; Wang A; Chen L; Han S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8146-54. PubMed ID: 23876063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable Preparation of a Cu NCs@Zn-MOF Hybrid with Dual Emission Induced by an Ion Exchange Strategy for the Detection of Explosives.
    Li H; Wu Y; Xu Z; Wang Y
    ACS Sens; 2024 Sep; 9(9):4701-4710. PubMed ID: 39174875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism.
    Şen FB; Bener M; Apak R
    J Fluoresc; 2021 Jul; 31(4):989-997. PubMed ID: 33880706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters.
    Ling Y; Zhang N; Qu F; Wen T; Gao ZF; Li NB; Luo HQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():315-20. PubMed ID: 24055680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diaminocyclohexane-Functionalized/Thioglycolic Acid-Modified Gold Nanoparticle-Based Colorimetric Sensing of Trinitrotoluene and Tetryl.
    Ular N; Üzer A; Durmazel S; Erçağ E; Apak R
    ACS Sens; 2018 Nov; 3(11):2335-2342. PubMed ID: 30350589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.
    Ma Y; Li H; Peng S; Wang L
    Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective detection of 2,4,6-trinitrophenol based on a fluorescent nanoscale bis(8-hydroxyquinoline) metal complex.
    Lv XJ; Qi L; Gao XY; Wang H; Huo Y; Zhang ZQ
    Talanta; 2016 Apr; 150():319-23. PubMed ID: 26838414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene.
    Shankaran DR; Gobi KV; Sakai T; Matsumoto K; Toko K; Miura N
    Biosens Bioelectron; 2005 Mar; 20(9):1750-6. PubMed ID: 15681190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters.
    Zhang JR; Yue YY; Luo HQ; Li NB
    Analyst; 2016 Feb; 141(3):1091-7. PubMed ID: 26661456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive resonance light scattering bioassay for heparin based on polyethyleneimine-capped Ag nanoclusters.
    Tang Y; Zhang Y; Su Y; Lv Y
    Talanta; 2013 Oct; 115():830-6. PubMed ID: 24054670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene.
    Chen Y; Chen Z; He Y; Lin H; Sheng P; Liu C; Luo S; Cai Q
    Nanotechnology; 2010 Mar; 21(12):125502. PubMed ID: 20203361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyaniline-based photothermal paper sensor for sensitive and selective detection of 2,4,6-trinitrotoluene.
    Huang S; He Q; Xu S; Wang L
    Anal Chem; 2015 May; 87(10):5451-6. PubMed ID: 25916554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive Naked Eye and Autofluorescence Detection of Cu(2+) in Biological Fluids by Polyethyleneimine Microspheres.
    Yan D; Deng C; He Y; Ge Y; Song G
    J Fluoresc; 2016 Sep; 26(5):1763-72. PubMed ID: 27349800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.
    Qu F; Zou X; Kong R; You J
    Talanta; 2016; 146():549-55. PubMed ID: 26695303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.