These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36317887)

  • 1. Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom,
    Shu H; You Y; Wang H; Wang J; Li L; Ma J; Lin X
    mSystems; 2022 Dec; 7(6):e0056322. PubMed ID: 36317887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytate as a Phosphorus Nutrient with Impacts on Iron Stress-Related Gene Expression for Phytoplankton: Insights from the Diatom
    Li J; Zhang K; Lin X; Li L; Lin S
    Appl Environ Microbiol; 2022 Jan; 88(2):e0209721. PubMed ID: 34757820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum for Shu et al., "Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom, Phaeodactylum tricornutum".
    Shu H; You Y; Wang H; Wang J; Li L; Ma J; Lin X
    mSystems; 2023 Feb; 8(1):e0129422. PubMed ID: 36744951
    [No Abstract]   [Full Text] [Related]  

  • 4. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum.
    Feng TY; Yang ZK; Zheng JW; Xie Y; Li DW; Murugan SB; Yang WD; Liu JS; Li HY
    Sci Rep; 2015 May; 5():10373. PubMed ID: 26020491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional differentiation and complementation of alkaline phosphatases and choreography of DOP scavenging in a marine diatom.
    Zhang K; Li J; Wang J; Lin X; Li L; You Y; Wu X; Zhou Z; Lin S
    Mol Ecol; 2022 Jun; 31(12):3389-3399. PubMed ID: 35445467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms.
    McQuaid JB; Kustka AB; Oborník M; Horák A; McCrow JP; Karas BJ; Zheng H; Kindeberg T; Andersson AJ; Barbeau KA; Allen AE
    Nature; 2018 Mar; 555(7697):534-537. PubMed ID: 29539640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional Orchestration of the Global Cellular Response of a Model Pennate Diatom to Diel Light Cycling under Iron Limitation.
    Smith SR; Gillard JT; Kustka AB; McCrow JP; Badger JH; Zheng H; New AM; Dupont CL; Obata T; Fernie AR; Allen AE
    PLoS Genet; 2016 Dec; 12(12):e1006490. PubMed ID: 27973599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nitrogen and phosphorus availability on cadmium tolerance in the marine diatom Phaeodactylum tricornutum.
    Ma J; Chen F; Zhou B; Zhang Z; Pan K
    Sci Total Environ; 2022 Sep; 838(Pt 4):156615. PubMed ID: 35691352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interkingdom Cross-Feeding of Ammonium from Marine Methylamine-Degrading Bacteria to the Diatom Phaeodactylum tricornutum.
    Suleiman M; Zecher K; Yücel O; Jagmann N; Philipp B
    Appl Environ Microbiol; 2016 Dec; 82(24):7113-7122. PubMed ID: 27694241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum.
    Taddei L; Stella GR; Rogato A; Bailleul B; Fortunato AE; Annunziata R; Sanges R; Thaler M; Lepetit B; Lavaud J; Jaubert M; Finazzi G; Bouly JP; Falciatore A
    J Exp Bot; 2016 Jun; 67(13):3939-51. PubMed ID: 27225826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline.
    Yang M; Lin X; Liu X; Zhang J; Ge F
    Mol Plant; 2018 Oct; 11(10):1292-1307. PubMed ID: 30176371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic analysis and a review of the history of the accidental phytoplankter, Phaeodactylum tricornutum Bohlin (Bacillariophyta).
    Sabir JSM; Theriot EC; Manning SR; Al-Malki AL; Khiyami MA; Al-Ghamdi AK; Sabir MJ; Romanovicz DK; Hajrah NH; El Omri A; Jansen RK; Ashworth MP
    PLoS One; 2018; 13(6):e0196744. PubMed ID: 29883488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms.
    Kazamia E; Sutak R; Paz-Yepes J; Dorrell RG; Vieira FRJ; Mach J; Morrissey J; Leon S; Lam F; Pelletier E; Camadro JM; Bowler C; Lesuisse E
    Sci Adv; 2018 May; 4(5):eaar4536. PubMed ID: 29774236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Manipulation of Competition for Nitrate between Heterotrophic Bacteria and Diatoms.
    Diner RE; Schwenck SM; McCrow JP; Zheng H; Allen AE
    Front Microbiol; 2016; 7():880. PubMed ID: 27375600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome, Biochemical and Growth Responses of the Marine Phytoplankter Phaeodactylum Tricornutum Bohlin (Bacillariophyta) to Copepod Grazer Presence.
    Li S; Ismar SMH
    Cell Physiol Biochem; 2018; 46(3):1091-1111. PubMed ID: 29669349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.
    Abida H; Dolch LJ; Meï C; Villanova V; Conte M; Block MA; Finazzi G; Bastien O; Tirichine L; Bowler C; Rébeillé F; Petroutsos D; Jouhet J; Maréchal E
    Plant Physiol; 2015 Jan; 167(1):118-36. PubMed ID: 25489020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific acclimations to phosphorus limitation in the marine diatom Phaeodactylum tricornutum.
    Dell'Aquila G; Maier UG
    Biol Chem; 2020 Nov; 401(12):1495-1501. PubMed ID: 32845857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress.
    Yang ZK; Zheng JW; Niu YF; Yang WD; Liu JS; Li HY
    Environ Microbiol; 2014 Jun; 16(6):1793-807. PubMed ID: 24467511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying silicon-dependent metal tolerance in the marine diatom Phaeodactylum tricornutum.
    Zhou B; Ma J; Chen F; Zou Y; Wei Y; Zhong H; Pan K
    Environ Pollut; 2020 Jul; 262():114331. PubMed ID: 32443203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.