These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36318032)

  • 21. Feasibility and clinical usefulness of deep learning-accelerated MRI for acute painful fracture patients wearing a splint: A prospective comparative study.
    Roh S; Park JI; Kim GY; Yoo HJ; Nickel D; Koerzdoerfer G; Sung J; Oh J; Chae HD; Hong SH; Choi JY
    PLoS One; 2023; 18(6):e0287903. PubMed ID: 37379272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.
    Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S
    Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning reconstructed T2-weighted Dixon imaging of the spine: Impact on acquisition time and image quality.
    Berkarda Z; Wiedemann S; Wilpert C; Strecker R; Koerzdoerfer G; Nickel D; Bamberg F; Benndorf M; Mayrhofer T; Russe MF; Weiss J; Diallo TD
    Eur J Radiol; 2024 Sep; 178():111633. PubMed ID: 39067266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accelerated Three-dimensional T2-Weighted Turbo-Spin-Echo Sequences with Inner-Volume Excitation and Iterative Denoising in the Setting of Pelvis MRI at 1.5T: Impact on Image Quality and Lesion Detection.
    Almansour H; Weiland E; Kuehn B; Kannengiesser S; Gassenmaier S; Herrmann J; Hoffmann R; Othman AE; Afat S
    Acad Radiol; 2022 Nov; 29(11):e248-e259. PubMed ID: 35144868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning-accelerated image reconstruction in back pain-MRI imaging: reduction of acquisition time and improvement of image quality.
    Estler A; Hauser TK; Brunnée M; Zerweck L; Richter V; Knoppik J; Örgel A; Bürkle E; Adib SD; Hengel H; Nikolaou K; Ernemann U; Gohla G
    Radiol Med; 2024 Mar; 129(3):478-487. PubMed ID: 38349416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility and Implementation of a Deep Learning MR Reconstruction for TSE Sequences in Musculoskeletal Imaging.
    Herrmann J; Koerzdoerfer G; Nickel D; Mostapha M; Nadar M; Gassenmaier S; Kuestner T; Othman AE
    Diagnostics (Basel); 2021 Aug; 11(8):. PubMed ID: 34441418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Usefulness of Breath-Hold Fat-Suppressed T2-Weighted Images With Deep Learning-Based Reconstruction of the Liver: Comparison to Conventional Free-Breathing Turbo Spin Echo.
    Ichinohe F; Oyama K; Yamada A; Hayashihara H; Adachi Y; Kitoh Y; Kanki Y; Maruyama K; Nickel MD; Fujinaga Y
    Invest Radiol; 2023 Jun; 58(6):373-379. PubMed ID: 36728880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous Multislice Accelerated Turbo Spin Echo Magnetic Resonance Imaging: Comparison and Combination With In-Plane Parallel Imaging Acceleration for High-Resolution Magnetic Resonance Imaging of the Knee.
    Fritz J; Fritz B; Zhang J; Thawait GK; Joshi DH; Pan L; Wang D
    Invest Radiol; 2017 Sep; 52(9):529-537. PubMed ID: 28430716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning-accelerated T2-weighted imaging versus conventional T2-weighted imaging in the female pelvic cavity: image quality and diagnostic performance.
    Kim H; Choi MH; Lee YJ; Han D; Mostapha M; Nickel D
    Acta Radiol; 2024 May; 65(5):499-505. PubMed ID: 38343091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved fat-suppression homogeneity with mDIXON turbo spin echo (TSE) in pediatric spine imaging at 3.0 T.
    Pokorney AL; Chia JM; Pfeifer CM; Miller JH; Hu HH
    Acta Radiol; 2017 Nov; 58(11):1386-1394. PubMed ID: 28165290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast lumbar spine MRI protocol using deep learning-based reconstruction: diagnostic equivalence to a conventional protocol.
    Fujiwara M; Kashiwagi N; Matsuo C; Watanabe H; Kassai Y; Nakamoto A; Tomiyama N
    Skeletal Radiol; 2023 Feb; 52(2):233-241. PubMed ID: 36181535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast T2-weighted liver MRI: Image quality and solid focal lesions conspicuity using a deep learning accelerated single breath-hold HASTE fat-suppressed sequence.
    Mulé S; Kharrat R; Zerbib P; Massire A; Nickel MD; Ambarki K; Reizine E; Baranes L; Zegai B; Pigneur F; Kobeiter H; Luciani A
    Diagn Interv Imaging; 2022 Oct; 103(10):479-485. PubMed ID: 35597761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prospective Deployment of Deep Learning Reconstruction Facilitates Highly Accelerated Upper Abdominal MRI.
    Brendel JM; Jacoby J; Dehdab R; Ursprung S; Fritz V; Werner S; Herrmann J; Brendlin AS; Gassenmaier S; Schick F; Nickel D; Nikolaou K; Afat S; Almansour H
    Acad Radiol; 2024 Dec; 31(12):4965-4973. PubMed ID: 38955591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of diagnostic value and T2-weighted three-dimensional isotropic turbo spin-echo (3D-SPACE) image quality in comparison with T2-weighted two-dimensional turbo spin-echo (2D-TSE) sequences in lumbar spine MR imaging.
    Hossein J; Fariborz F; Mehrnaz R; Babak R
    Eur J Radiol Open; 2019; 6():36-41. PubMed ID: 30619918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time.
    Jurka M; Macova I; Wagnerova M; Capoun O; Jakubicek R; Ourednicek P; Lambert L; Burgetova A
    Quant Imaging Med Surg; 2024 May; 14(5):3534-3543. PubMed ID: 38720867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction-First Experience.
    Fritz J; Raithel E; Thawait GK; Gilson W; Papp DF
    Invest Radiol; 2016 Jun; 51(6):400-9. PubMed ID: 26685106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of deep-learning TSE images in clinical musculoskeletal imaging.
    Vashistha R; Almuqbel MM; Palmer NJ; Keenan RJ; Gilbert K; Wells S; Lynch A; Li A; Kingston-Smith S; Melzer TR; Koerzdoerfer G; O'Brien K
    J Med Imaging Radiat Oncol; 2024 Aug; 68(5):556-563. PubMed ID: 38837669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospective intraindividual comparison of a standard 2D TSE MRI protocol for ankle imaging and a deep learning-based 2D TSE MRI protocol with a scan time reduction of 48.
    Keller G; Estler A; Herrmann J; Afat S; Othman AE; Nickel D; Koerzdoerfer G; Springer F
    Radiol Med; 2023 Mar; 128(3):347-356. PubMed ID: 36807027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study.
    Recht MP; Zbontar J; Sodickson DK; Knoll F; Yakubova N; Sriram A; Murrell T; Defazio A; Rabbat M; Rybak L; Kline M; Ciavarra G; Alaia EF; Samim M; Walter WR; Lin DJ; Lui YW; Muckley M; Huang Z; Johnson P; Stern R; Zitnick CL
    AJR Am J Roentgenol; 2020 Dec; 215(6):1421-1429. PubMed ID: 32755163
    [No Abstract]   [Full Text] [Related]  

  • 40. Fully Automated 10-Minute 3D CAIPIRINHA SPACE TSE MRI of the Knee in Adults: A Multicenter, Multireader, Multifield-Strength Validation Study.
    Del Grande F; Delcogliano M; Guglielmi R; Raithel E; Stern SE; Papp DF; Candrian C; Fritz J
    Invest Radiol; 2018 Nov; 53(11):689-697. PubMed ID: 30085948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.