BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36318256)

  • 41. KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors.
    Feng C; Song C; Liu Y; Qian F; Gao Y; Ning Z; Wang Q; Jiang Y; Li Y; Li M; Chen J; Zhang J; Li C
    Nucleic Acids Res; 2020 Jan; 48(D1):D93-D100. PubMed ID: 31598675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic transcriptional and chromatin accessibility landscape of medaka embryogenesis.
    Li Y; Liu Y; Yang H; Zhang T; Naruse K; Tu Q
    Genome Res; 2020 Jun; 30(6):924-937. PubMed ID: 32591361
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data.
    Yang JH; Li JH; Jiang S; Zhou H; Qu LH
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D177-87. PubMed ID: 23161675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PlantCADB: A Comprehensive Plant Chromatin Accessibility Database.
    Ding K; Sun S; Luo Y; Long C; Zhai J; Zhai Y; Wang G
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):311-323. PubMed ID: 36328151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ChromLoops: a comprehensive database for specific protein-mediated chromatin loops in diverse organisms.
    Zhou Q; Cheng S; Zheng S; Wang Z; Guan P; Zhu Z; Huang X; Zhou C; Li G
    Nucleic Acids Res; 2023 Jan; 51(D1):D57-D69. PubMed ID: 36243984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies.
    Zhao J; Cheng F; Jia P; Cox N; Denny JC; Zhao Z
    Genome Med; 2018 Jan; 10(1):7. PubMed ID: 29378629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. iRegNet: an integrative Regulatory Network analysis tool for Arabidopsis thaliana.
    Shim S; Park CM; Seo PJ
    Plant Physiol; 2021 Nov; 187(3):1292-1309. PubMed ID: 34618085
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-Resolution Genome-Wide Occupancy in
    Tebbji F; Khemiri I; Sellam A
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055256
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq.
    Johannes F; Wardenaar R; Colomé-Tatché M; Mousson F; de Graaf P; Mokry M; Guryev V; Timmers HT; Cuppen E; Jansen RC
    Bioinformatics; 2010 Apr; 26(8):1000-6. PubMed ID: 20208068
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.
    Sakai H; Lee SS; Tanaka T; Numa H; Kim J; Kawahara Y; Wakimoto H; Yang CC; Iwamoto M; Abe T; Yamada Y; Muto A; Inokuchi H; Ikemura T; Matsumoto T; Sasaki T; Itoh T
    Plant Cell Physiol; 2013 Feb; 54(2):e6. PubMed ID: 23299411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. proChIPdb: a chromatin immunoprecipitation database for prokaryotic organisms.
    Decker KT; Gao Y; Rychel K; Al Bulushi T; Chauhan SM; Kim D; Cho BK; Palsson BO
    Nucleic Acids Res; 2022 Jan; 50(D1):D1077-D1084. PubMed ID: 34791440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SEAseq: a portable and cloud-based chromatin occupancy analysis suite.
    Adetunji MO; Abraham BJ
    BMC Bioinformatics; 2022 Feb; 23(1):77. PubMed ID: 35193506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. OpenAnnotate: a web server to annotate the chromatin accessibility of genomic regions.
    Chen S; Liu Q; Cui X; Feng Z; Li C; Wang X; Zhang X; Wang Y; Jiang R
    Nucleic Acids Res; 2021 Jul; 49(W1):W483-W490. PubMed ID: 33999180
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression.
    Arnaiz O; Van Dijk E; Bétermier M; Lhuillier-Akakpo M; de Vanssay A; Duharcourt S; Sallet E; Gouzy J; Sperling L
    BMC Genomics; 2017 Jun; 18(1):483. PubMed ID: 28651633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression.
    Libbrecht MW; Ay F; Hoffman MM; Gilbert DM; Bilmes JA; Noble WS
    Genome Res; 2015 Apr; 25(4):544-57. PubMed ID: 25677182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
    Jin J; Tian F; Yang DC; Meng YQ; Kong L; Luo J; Gao G
    Nucleic Acids Res; 2017 Jan; 45(D1):D1040-D1045. PubMed ID: 27924042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DFLAT: functional annotation for human development.
    Wick HC; Drabkin H; Ngu H; Sackman M; Fournier C; Haggett J; Blake JA; Bianchi DW; Slonim DK
    BMC Bioinformatics; 2014 Feb; 15():45. PubMed ID: 24507166
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of the accessible chromatin regions in six tissues in the soybean.
    Huang M; Zhang L; Zhou L; Yung WS; Wang Z; Xiao Z; Wang Q; Wang X; Li MW; Lam HM
    Genomics; 2022 May; 114(3):110364. PubMed ID: 35421559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.