BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36318349)

  • 1. Nanoarchitectonics-based model membrane platforms for probing membrane-disruptive interactions of odd-chain antimicrobial lipids.
    Yoon BK; Tan SW; Tan JYB; Jackman JA; Cho NJ
    Nano Converg; 2022 Nov; 9(1):48. PubMed ID: 36318349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling Membrane-Disruptive Properties of Sodium Lauroyl Lactylate and Its Hydrolytic Products: A QCM-D and EIS Study.
    Gooran N; Tan SW; Yoon BK; Jackman JA
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Evaluation of Antimicrobial Lipid Interactions with Tethered Lipid Bilayers by Electrochemical Impedance Spectroscopy.
    Tan SW; Jeon WY; Yoon BK; Jackman JA
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Membrane Curvature Nanoarchitectonics on Membrane-Disruptive Interactions of Antimicrobial Lipids and Surfactants.
    Moon S; Yoon BK; Jackman JA
    Langmuir; 2022 Apr; 38(15):4606-4616. PubMed ID: 35389653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tethered Bilayer Lipid Membrane Platform for Screening Triton X-100 Detergent Replacements by Electrochemical Impedance Spectroscopy.
    Tan SW; Gooran N; Lim HM; Yoon BK; Jackman JA
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling How Antimicrobial Lipid Mixtures Disrupt Virus-Mimicking Lipid Vesicles: A QCM-D Study.
    Moon S; Sut TN; Yoon BK; Jackman JA
    Biomimetics (Basel); 2024 Jan; 9(2):. PubMed ID: 38392113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical Characterization of LTX-315 Anticancer Peptide Interactions with Model Membrane Platforms: Effect of Membrane Surface Charge.
    Koo DJ; Sut TN; Tan SW; Yoon BK; Jackman JA
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-Disruptive Effects of Fatty Acid and Monoglyceride Mitigants on
    Tan SW; Yoon BK; Jackman JA
    Molecules; 2024 Jan; 29(1):. PubMed ID: 38202820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements.
    Gooran N; Yoon BK; Jackman JA
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid Membrane Remodeling by the Micellar Aggregation of Long-Chain Unsaturated Fatty Acids for Sustainable Antimicrobial Strategies.
    Shin S; Tae H; Park S; Cho NJ
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the Biophysical Mechanisms of How Antiviral Detergents Disrupt Supported Lipid Membranes: Toward Replacing Triton X-100.
    Gooran N; Tan SW; Frey SL; Jackman JA
    Langmuir; 2024 Mar; 40(12):6524-6536. PubMed ID: 38478717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers.
    Yoon BK; Jackman JA; Park S; Mokrzecka N; Cho NJ
    Langmuir; 2019 Mar; 35(9):3568-3575. PubMed ID: 30720282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies.
    Swana KW; Camesano TA; Nagarajan R
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration.
    Wang KF; Nagarajan R; Camesano TA
    Colloids Surf B Biointerfaces; 2014 Apr; 116():472-81. PubMed ID: 24561501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers.
    Kawakami LM; Yoon BK; Jackman JA; Knoll W; Weiss PS; Cho NJ
    Langmuir; 2017 Dec; 33(51):14756-14765. PubMed ID: 29182278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring.
    Yousefi N; Tufenkji N
    Front Chem; 2016; 4():46. PubMed ID: 27995125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartz Crystal Microbalances as Tools for Probing Protein-Membrane Interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2019; 2003():31-52. PubMed ID: 31218612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating Membrane Morphological Responses with Micellar Aggregation Behavior of Capric Acid and Monocaprin.
    Yoon BK; Jackman JA; Kim MC; Sut TN; Cho NJ
    Langmuir; 2017 Mar; 33(11):2750-2759. PubMed ID: 28263610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Resistivity Lipid Bilayers Assembled on Polyelectrolyte Multilayer Cushions: An Impedance Study.
    Diamanti E; Gregurec D; Rodríguez-Presa MJ; Gervasi CA; Azzaroni O; Moya SE
    Langmuir; 2016 Jun; 32(25):6263-71. PubMed ID: 27267089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides.
    Briand E; Zäch M; Svedhem S; Kasemo B; Petronis S
    Analyst; 2010 Feb; 135(2):343-50. PubMed ID: 20098769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.