These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36318565)

  • 1. Improvements in Classification of Left and Right Foot Motor Intention Using Modulated Steady-State Somatosensory Evoked Potential Induced by Electrical Stimulation and Motor Imagery.
    Bian Y; Zhao L; Li J; Guo T; Fu X; Qi H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():150-159. PubMed ID: 36318565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing False Triggering Caused by Irrelevant Mental Activities in Brain-Computer Interface Based on Motor Imagery.
    Zhou L; Tao X; He F; Zhou P; Qi H
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3638-3648. PubMed ID: 33729961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-stimulus phase coherence in steady-state somatosensory evoked potentials and its application in improving the performance of single-channel MI-BCI.
    Tao X; Yi W; Wang K; He F; Qi H
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34077914
    [No Abstract]   [Full Text] [Related]  

  • 5. [Research on feature classification of lower limb motion imagination based on electrical stimulation to enhance rehabilitation].
    Li J; Zhao L; Bian Y; Li M; Jia Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):425-433. PubMed ID: 34180187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commanding a Brain-Controlled Wheelchair Using Steady-State Somatosensory Evoked Potentials.
    Kim KT; Suk HI; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):654-665. PubMed ID: 27514060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common spatial patterns for steady-state somatosensory evoked potentials.
    Nam Y; Cichocki A; Choi S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2255-8. PubMed ID: 24110173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery.
    Ahn S; Ahn M; Cho H; Chan Jun S
    J Neural Eng; 2014 Dec; 11(6):066004. PubMed ID: 25307730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-based brain-computer interfaces exploiting steady-state somatosensory-evoked potentials: a literature review.
    Petit J; Rouillard J; Cabestaing F
    J Neural Eng; 2021 Nov; 18(5):. PubMed ID: 34725311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI.
    Tariq M; Trivailo PM; Simic M
    PLoS One; 2020; 15(3):e0230184. PubMed ID: 32182270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential.
    Tao T; Jia Y; Xu G; Liang R; Zhang Q; Chen L; Gao Y; Chen R; Zheng X; Yu Y
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36608339
    [No Abstract]   [Full Text] [Related]  

  • 14. A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs.
    Breitwieser C; Pokorny C; Müller-Putz GR
    J Neural Eng; 2016 Dec; 13(6):066015. PubMed ID: 27788124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effects of Bilateral Phase-Dependent Closed-Loop Vibration Stimulation With Motor Imagery Paradigm.
    Zhang W; Song A; Zeng H; Xu B; Miao M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2732-2742. PubMed ID: 36129854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of action difference on motor imagery based on delayed matching posture task.
    Li M; Zuo H; Zhou H; Xu G; Qi E
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36645915
    [No Abstract]   [Full Text] [Related]  

  • 19. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces.
    Vuckovic A; Pangaro S; Finda P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multi-Class BCI Based on Somatosensory Imagery.
    Yao L; Mrachacz-Kersting N; Sheng X; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1508-1515. PubMed ID: 29994123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.