These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36319219)

  • 1. Constant intensity acoustic propagation in the presence of non-uniform properties and impedance discontinuities: Hermitian and non-Hermitian solutions.
    Norris AN
    J Acoust Soc Am; 2022 Oct; 152(4):2485. PubMed ID: 36319219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constant-intensity waves and their modulation instability in non-Hermitian potentials.
    Makris KG; Musslimani ZH; Christodoulides DN; Rotter S
    Nat Commun; 2015 Jul; 6():7257. PubMed ID: 26154350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of photonic constant-intensity waves and induced transparency in tailored non-Hermitian lattices.
    Steinfurth A; Krešić I; Weidemann S; Kremer M; Makris KG; Heinrich M; Rotter S; Szameit A
    Sci Adv; 2022 May; 8(21):eabl7412. PubMed ID: 35613272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave propagation through disordered media without backscattering and intensity variations.
    Makris KG; Brandstötter A; Ambichl P; Musslimani ZH; Rotter S
    Light Sci Appl; 2017 Sep; 6(9):e17035. PubMed ID: 30167289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient non-Hermitian skin effect.
    Gu Z; Gao H; Xue H; Li J; Su Z; Zhu J
    Nat Commun; 2022 Dec; 13(1):7668. PubMed ID: 36509774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic non-Hermitian skin effect from twisted winding topology.
    Zhang L; Yang Y; Ge Y; Guan YJ; Chen Q; Yan Q; Chen F; Xi R; Li Y; Jia D; Yuan SQ; Sun HX; Chen H; Zhang B
    Nat Commun; 2021 Nov; 12(1):6297. PubMed ID: 34728639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exceptional points in lossy media lead to deep polynomial wave penetration with spatially uniform power loss.
    Yulaev A; Kim S; Li Q; Westly DA; Roxworthy BJ; Srinivasan K; Aksyuk VA
    Nat Nanotechnol; 2022 Jun; 17(6):583-589. PubMed ID: 35449411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric acoustic energy transport in non-Hermitian metamaterials.
    Thevamaran R; Branscomb RM; Makri E; Anzel P; Christodoulides D; Kottos T; Thomas EL
    J Acoust Soc Am; 2019 Jul; 146(1):863. PubMed ID: 31370575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-parameters, non-Hermitian ports and the finite-element implementation in photonic devices with 𝒫𝒯-symmetry.
    Wu B; Wang Z; Chen W; Xiong Z; Xu J; Chen Y
    Opt Express; 2019 Jun; 27(13):17648-17657. PubMed ID: 31252721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equal-intensity waves in non-Hermitian media.
    Komis I; Sardelis S; Musslimani ZH; Makris KG
    Phys Rev E; 2020 Sep; 102(3-1):032203. PubMed ID: 33075939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological Waveguiding near an Exceptional Point: Defect-Immune, Slow-Light, and Loss-Immune Propagation.
    Hassani Gangaraj SA; Monticone F
    Phys Rev Lett; 2018 Aug; 121(9):093901. PubMed ID: 30230859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial.
    Ghatak A; Brandenbourger M; van Wezel J; Coulais C
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29561-29568. PubMed ID: 33168722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating the scattering pattern with non-Hermitian particle arrays.
    Zhang YJ; Li P; Galdi V; Tong MS; Alù A
    Opt Express; 2020 Jun; 28(13):19492-19507. PubMed ID: 32672225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride.
    Wang M; Ye L; Christensen J; Liu Z
    Phys Rev Lett; 2018 Jun; 120(24):246601. PubMed ID: 29957004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic Supercoupling in a Zero-Compressibility Waveguide.
    Esfahlani H; Byrne MS; McDermott M; Alù A
    Research (Wash D C); 2019; 2019():2457870. PubMed ID: 31549050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Hermitian Physics without Gain or Loss: The Skin Effect of Reflected Waves.
    Franca S; Könye V; Hassler F; van den Brink J; Fulga C
    Phys Rev Lett; 2022 Aug; 129(8):086601. PubMed ID: 36053685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow sound in lined flow ducts.
    Aurégan Y; Pagneux V
    J Acoust Soc Am; 2015 Aug; 138(2):605-13. PubMed ID: 26328679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the calculation of reflectance in non-uniform ear canals.
    Nørgaard KR; Charaziak KK; Shera CA
    J Acoust Soc Am; 2019 Aug; 146(2):1464. PubMed ID: 31472574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems.
    Koutserimpas TT; Fleury R
    Phys Rev Lett; 2018 Feb; 120(8):087401. PubMed ID: 29543017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear scattering by non-Hermitian multilayers with saturation effects.
    Shramkova OV; Makris KG; Christodoulides DN; Tsironis GP
    Phys Rev E; 2021 May; 103(5-1):052205. PubMed ID: 34134230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.