These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36319260)

  • 21. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers.
    Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Aperture Shape on Absorption Property of Acoustic Metamaterial of Parallel-Connection Helmholtz Resonator.
    Bi S; Yang F; Tang S; Shen X; Zhang X; Zhu J; Yang X; Peng W; Yuan F
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic behaviors of the microperforated panel absorber array in nonlinear regime under moderate acoustic pressure excitation.
    Chiang YK; Choy YS
    J Acoust Soc Am; 2018 Jan; 143(1):538. PubMed ID: 29390793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An electromechanical low frequency panel sound absorber.
    Chang D; Liu B; Li X
    J Acoust Soc Am; 2010 Aug; 128(2):639-45. PubMed ID: 20707433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials.
    Li D; Chang D; Liu B
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32121579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band.
    Yang X; Yang F; Shen X; Wang E; Zhang X; Shen C; Peng W
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adjustable Sound Absorber of Multiple Parallel-Connection Helmholtz Resonators with Tunable Apertures Prepared by Low-Force Stereolithography of Photopolymer Resin.
    Yang F; Bi S; Shen X; Li Z; Zhang X; Wang E; Yang X; Peng W; Huang C; Liang P; Sun G
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Series and parallel coupling of 3D printed micro-perforated panels and coiled quarter wavelength tubes.
    Catapane G; Petrone G; Robin O
    J Acoust Soc Am; 2023 Nov; 154(5):3027-3040. PubMed ID: 37955569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate.
    Bravo T; Maury C; Pinhède C
    J Acoust Soc Am; 2012 May; 131(5):3853-63. PubMed ID: 22559361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the acoustic analysis and optimization of ducted ventilation systems using a sub-structuring approach.
    Yu X; Cui FS; Cheng L
    J Acoust Soc Am; 2016 Jan; 139(1):279-89. PubMed ID: 26827024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical analyses of the sound absorption of cylindrical microperforated panel space absorbers with cores.
    Toyoda M; Fujita S; Sakagami K
    J Acoust Soc Am; 2015 Dec; 138(6):3531-8. PubMed ID: 26723310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sound Insulation of Corrugated-Core Sandwich Panels: Modeling, Optimization and Experiment.
    Ren L; Yang H; Liu L; Zhai C; Song Y
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sound Insulation and Reflection Properties of Sonic Crystal Barrier Based on Micro-Perforated Cylinders.
    Dimitrijević SM; García-Chocano VM; Cervera F; Roth E; Sánchez-Dehesa J
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31480417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Broadband Sound Insulation and Dual Equivalent Negative Properties of Acoustic Metamaterial with Distributed Piezoelectric Resonators.
    Zhang Z; Wang J; Li Z; Zhang X
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the acoustic potential of 3D printed micro-perforated panels: A comparative analysis.
    Deepak ; Pitchaimani J; Nadimpalli R; Mailan Chinnapandi LB
    Heliyon; 2024 Apr; 10(7):e28612. PubMed ID: 38601601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research on the Sound Insulation Performance of Composite Rubber Reinforced with Hollow Glass Microsphere Based on Acoustic Finite Element Simulation.
    Yang X; Tang S; Shen X; Peng W
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators.
    Estève SJ; Johnson ME
    J Acoust Soc Am; 2002 Dec; 112(6):2840-8. PubMed ID: 12509005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broadband thin sound absorber based on hybrid labyrinthine metastructures with optimally designed parameters.
    Gao YX; Lin YP; Zhu YF; Liang B; Yang J; Yang J; Cheng JC
    Sci Rep; 2020 Jul; 10(1):10705. PubMed ID: 32612130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.
    Bravo T; Maury C; Pinhède C
    J Acoust Soc Am; 2013 Nov; 134(5):3663-73. PubMed ID: 24180777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of large amplitude vibration on the pressure-dependent absorption of a structure multiple cavity system.
    Lee YY
    PLoS One; 2019; 14(7):e0219257. PubMed ID: 31287827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.