These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36319280)

  • 1. Melnikov-type method for a class of planar hybrid piecewise-smooth systems with impulsive effect and noise excitation: Heteroclinic orbits.
    Wei Z; Li Y; Moroz I; Zhang W
    Chaos; 2022 Oct; 32(10):103127. PubMed ID: 36319280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melnikov-type method for a class of hybrid piecewise-smooth systems with impulsive effect and noise excitation: Homoclinic orbits.
    Li Y; Wei Z; Zhang W; Yi M
    Chaos; 2022 Jul; 32(7):073119. PubMed ID: 35907728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Existence of homoclinic orbits and heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching manifolds.
    Zhu B; Wei Z; Escalante-González RJ; Kuznetsov NV
    Chaos; 2020 Dec; 30(12):123143. PubMed ID: 33380050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saddle-center and periodic orbit: Dynamics near symmetric heteroclinic connection.
    Lerman LM; Trifonov KN
    Chaos; 2021 Feb; 31(2):023113. PubMed ID: 33653062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence of three heteroclinic cycles and chaos analyses for a class of 3D piecewise affine systems.
    Wang F; Wei Z; Zhang W; Moroz I
    Chaos; 2023 Feb; 33(2):023108. PubMed ID: 36859207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horseshoes in 4-dimensional piecewise affine systems with bifocal heteroclinic cycles.
    Wu T; Yang XS
    Chaos; 2018 Nov; 28(11):113120. PubMed ID: 30501220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric determination of classical actions of heteroclinic and unstable periodic orbits.
    Li J; Tomsovic S
    Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaos and subharmonic bifurcations of a soft Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation.
    Zhou L; Chen F
    Chaos; 2021 Nov; 31(11):113133. PubMed ID: 34881616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding homoclinic connections formed by corner intersections in piecewise-smooth maps.
    Simpson DJ
    Chaos; 2016 Jul; 26(7):073105. PubMed ID: 27475065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifurcations of nontwisted heteroclinic loop with resonant eigenvalues.
    Jin Y; Zhu X; Guo Z; Xu H; Zhang L; Ding B
    ScientificWorldJournal; 2014; 2014():716082. PubMed ID: 24892076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system.
    Guo S; Luo ACJ
    Chaos; 2021 Apr; 31(4):043106. PubMed ID: 34251254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasiperiodic perturbations of heteroclinic attractor networks.
    Delshams A; Guillamon A; Huguet G
    Chaos; 2018 Oct; 28(10):103111. PubMed ID: 30384643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-constrained switching times for heteroclinic computing.
    Neves FS; Voit M; Timme M
    Chaos; 2017 Mar; 27(3):033107. PubMed ID: 28364740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics.
    Cao Q; Wiercigroch M; Pavlovskaia EE; Thompson JM; Grebogi C
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1865):635-52. PubMed ID: 17698466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction.
    Li J; Tomsovic S
    Phys Rev E; 2019 Mar; 99(3-1):032212. PubMed ID: 30999433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melnikov analysis of chaos in a simple SIR model with periodically or stochastically modulated nonlinear incidence rate.
    Shi Y
    J Biol Dyn; 2020 Dec; 14(1):269-288. PubMed ID: 32281489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Singular cycles and chaos in a new class of 3D three-zone piecewise affine systems.
    Lu K; Yang Q; Chen G
    Chaos; 2019 Apr; 29(4):043124. PubMed ID: 31042943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient manifolds tracing for planar maps.
    Ciro D; Caldas IL; Viana RL; Evans TE
    Chaos; 2018 Sep; 28(9):093106. PubMed ID: 30278620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Logarithmic correction to the probability of capture for dissipatively perturbed Hamiltonian systems.
    Haberman R; Ho EK
    Chaos; 1995 Jun; 5(2):374-384. PubMed ID: 12780191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators.
    Kenig E; Tsarin YA; Lifshitz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016212. PubMed ID: 21867278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.