BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36319291)

  • 1. Forecasting macroscopic dynamics in adaptive Kuramoto network using reservoir computing.
    Andreev AV; Badarin AA; Maximenko VA; Hramov AE
    Chaos; 2022 Oct; 32(10):103126. PubMed ID: 36319291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilizing machine learning prediction of dynamics: Novel noise-inspired regularization tested with reservoir computing.
    Wikner A; Harvey J; Girvan M; Hunt BR; Pomerance A; Antonsen T; Ott E
    Neural Netw; 2024 Feb; 170():94-110. PubMed ID: 37977092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel Machine Learning for Forecasting the Dynamics of Complex Networks.
    Srinivasan K; Coble N; Hamlin J; Antonsen T; Ott E; Girvan M
    Phys Rev Lett; 2022 Apr; 128(16):164101. PubMed ID: 35522516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust forecasting using predictive generalized synchronization in reservoir computing.
    Platt JA; Wong A; Clark R; Penny SG; Abarbanel HDI
    Chaos; 2021 Dec; 31(12):123118. PubMed ID: 34972341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
    Racca A; Magri L
    Neural Netw; 2021 Oct; 142():252-268. PubMed ID: 34034072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output.
    Shi L; Yan Y; Wang H; Wang S; Qu SX
    Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.
    Volkova S; Ayton E; Porterfield K; Corley CD
    PLoS One; 2017; 12(12):e0188941. PubMed ID: 29244814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects and Challenges of Using Machine Learning for Academic Forecasting.
    Onyema EM; Almuzaini KK; Onu FU; Verma D; Gregory US; Puttaramaiah M; Afriyie RK
    Comput Intell Neurosci; 2022; 2022():5624475. PubMed ID: 35909823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study.
    Shahi S; Fenton FH; Cherry EM
    Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctionality in a reservoir computer.
    Flynn A; Tsachouridis VA; Amann A
    Chaos; 2021 Jan; 31(1):013125. PubMed ID: 33754772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Complementary Ensemble Empirical Mode Decomposition and Gated Recurrent Unit to Predict Landslide Displacements in Dam Reservoir.
    Yang B; Xiao T; Wang L; Huang W
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weather forecasting based on data-driven and physics-informed reservoir computing models.
    Mammedov YD; Olugu EU; Farah GA
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):24131-24144. PubMed ID: 34825327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive embedding procedure for time series forecasting with deep neural networks.
    Succetti F; Rosato A; Panella M
    Neural Netw; 2023 Oct; 167():715-729. PubMed ID: 37729787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the consequences of accidents involving dangerous substances using machine learning.
    Chebila M
    Ecotoxicol Environ Saf; 2021 Jan; 208():111470. PubMed ID: 33091772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine-learning approach for long-term prediction of experimental cardiac action potential time series using an autoencoder and echo state networks.
    Shahi S; Fenton FH; Cherry EM
    Chaos; 2022 Jun; 32(6):063117. PubMed ID: 35778132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in physical reservoir computing: A review.
    Tanaka G; Yamane T; Héroux JB; Nakane R; Kanazawa N; Takeda S; Numata H; Nakano D; Hirose A
    Neural Netw; 2019 Jul; 115():100-123. PubMed ID: 30981085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study.
    Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H
    Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.