These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36319356)

  • 1. A low phase and amplitude noise microwave source for vapor cell atomic clocks.
    Ju B; Yun P; Hao Q; Nie S; Liu G
    Rev Sci Instrum; 2022 Oct; 93(10):104709. PubMed ID: 36319356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.
    François B; Calosso CE; Danet JM; Boudot R
    Rev Sci Instrum; 2014 Sep; 85(9):094709. PubMed ID: 25273756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.
    François B; Calosso CE; Abdel Hafiz M; Micalizio S; Boudot R
    Rev Sci Instrum; 2015 Sep; 86(9):094707. PubMed ID: 26429467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low phase noise microwave source for atomic spin squeezing experiments in 87Rb.
    Chen Z; Bohnet JG; Weiner JM; Thompson JK
    Rev Sci Instrum; 2012 Apr; 83(4):044701. PubMed ID: 22559559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks.
    Gruet F; Al-Samaneh A; Kroemer E; Bimboes L; Miletic D; Affolderbach C; Wahl D; Boudot R; Mileti G; Michalzik R
    Opt Express; 2013 Mar; 21(5):5781-92. PubMed ID: 23482148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical low-noise microwave source for cold-atom experiments.
    Meyer-Hoppe B; Baron M; Cassens C; Anders F; Idel A; Peise J; Klempt C
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37458537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High sensitivity microwave phase noise analyzer based on a phase locked optoelectronic oscillator.
    Peng H; Xu Y; Guo R; Du H; Chen J; Chen Z
    Opt Express; 2019 Jun; 27(13):18910-18927. PubMed ID: 31252826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-noise and broadband optical frequency comb generation based on an optoelectronic oscillator.
    Xie X; Sun T; Peng H; Zhang C; Guo P; Zhu L; Hu W; Chen Z
    Opt Lett; 2014 Feb; 39(4):785-8. PubMed ID: 24562206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-frequency fundamental-mode NPRO laser for low-noise microwave generation.
    Fan W; Ma C; Liu D; Zhu R; Zhou G; Gong X; Zhou S; Xu J; Yuan W; Guo C; Yeh HC
    Opt Express; 2023 Apr; 31(8):13402-13413. PubMed ID: 37157479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing Cavity-Pulling Shift in Ramsey-Operated Compact Clocks.
    Gozzelino M; Micalizio S; Levi F; Godone A; Calosso CE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1294-1301. PubMed ID: 29993382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic chip-based low-noise microwave oscillator.
    Kudelin I; Groman W; Ji QX; Guo J; Kelleher ML; Lee D; Nakamura T; McLemore CA; Shirmohammadi P; Hanifi S; Cheng H; Jin N; Wu L; Halladay S; Luo Y; Dai Z; Jin W; Bai J; Liu Y; Zhang W; Xiang C; Chang L; Iltchenko V; Miller O; Matsko A; Bowers SM; Rakich PT; Campbell JC; Bowers JE; Vahala KJ; Quinlan F; Diddams SA
    Nature; 2024 Mar; 627(8004):534-539. PubMed ID: 38448599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact and ultrastable photonic microwave oscillator.
    Giunta M; Yu J; Lessing M; Fischer M; Lezius M; Xie X; Santarelli G; Le Coq Y; Holzwarth R
    Opt Lett; 2020 Mar; 45(5):1140-1143. PubMed ID: 32108790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave oscillator using piezoelectric thin-film resonator aiming for ultraminiaturization of atomic clock.
    Hara M; Yano Y; Kajita M; Nishino H; Ibata Y; Toda M; Hara S; Kasamatsu A; Ito H; Ono T; Ido T
    Rev Sci Instrum; 2018 Oct; 89(10):105002. PubMed ID: 30399742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser.
    Kalubovilage M; Endo M; Schibli TR
    Opt Express; 2020 Aug; 28(17):25400-25409. PubMed ID: 32907062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wideband finely tunable, ultralow-phase noise microwave generation in a Brillouin cavity.
    Zhang Z; Xu Y; Luo X; Wang J; Bao H
    Opt Lett; 2024 Jul; 49(13):3640-3643. PubMed ID: 38950229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs.
    Saleh K; Chembo YK
    Opt Express; 2016 Oct; 24(22):25043-25056. PubMed ID: 27828444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar.
    Kittlaus EA; Eliyahu D; Ganji S; Williams S; Matsko AB; Cooper KB; Forouhar S
    Nat Commun; 2021 Jul; 12(1):4397. PubMed ID: 34285213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.