These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 36319385)
1. Effects of background noise on fit parameters of plasma scattering angle distributions. Nicolaou G; Allegrini F; Livadiotis G; Ebert RW Rev Sci Instrum; 2022 Oct; 93(10):103305. PubMed ID: 36319385 [TBL] [Abstract][Full Text] [Related]
2. Statistical Uncertainties of Space Plasma Properties Described by Kappa Distributions. Nicolaou G; Livadiotis G Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286313 [TBL] [Abstract][Full Text] [Related]
3. On the Determination of Kappa Distribution Functions from Space Plasma Observations. Nicolaou G; Livadiotis G; Wicks RT Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285987 [TBL] [Abstract][Full Text] [Related]
4. Effect of scattering angle error on particle size determination by multiangle dynamic light scattering. Gao S; Shen J; Thomas JC; Yin Z; Wang X; Wang Y; Liu W; Sun X Appl Opt; 2015 Apr; 54(10):2824-31. PubMed ID: 25967195 [TBL] [Abstract][Full Text] [Related]
5. Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements. Nicolaou G; Wicks R; Livadiotis G; Verscharen D; Owen C; Kataria D Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285879 [TBL] [Abstract][Full Text] [Related]
6. Polymer gel dosimetry for measuring the dose near thin high-Z materials irradiated with high energy photon beams. Warmington LL; Gopishankar N; Broadhurst JH; Watanabe Y Med Phys; 2016 Dec; 43(12):6525. PubMed ID: 27908188 [TBL] [Abstract][Full Text] [Related]
7. Effects of Angular Dependency of Particulate Light Scattering Intensity on Determination of Samples with Bimodal Size Distributions Using Dynamic Light Scattering Methods. Kato H; Nakamura A; Kinugasa S Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201906 [TBL] [Abstract][Full Text] [Related]
8. Size and Refractive Index Determination of Single Polystyrene Spheres. Marx E; Mulholland GW J Res Natl Bur Stand (1977); 1983; 88(5):321-338. PubMed ID: 34566108 [TBL] [Abstract][Full Text] [Related]
9. Angular scattering of protons through ultrathin graphene foils: Application for time-of-flight instrumentation. Vira AD; Fernandes PA; Funsten HO; Morley SK; Yamaguchi H; Liu F; Moody NA Rev Sci Instrum; 2020 Mar; 91(3):033302. PubMed ID: 32260010 [TBL] [Abstract][Full Text] [Related]
10. Estimation of particle size distributions from bulk scattering spectra: sensitivity to distribution type and spectral noise. Postelmans A; Aernouts B; Saeys W Opt Express; 2018 Jun; 26(12):15015-15038. PubMed ID: 30114755 [TBL] [Abstract][Full Text] [Related]
11. A general solution to charged particle beam flattening using an optimized dual-scattering-foil technique, with application to proton therapy beams. Grusell E; Montelius A; Brahme A; Rikner G; Russell K Phys Med Biol; 1994 Dec; 39(12):2201-16. PubMed ID: 15551548 [TBL] [Abstract][Full Text] [Related]
12. Angular scattering of 1-50 keV ions through graphene and thin carbon foils: potential applications for space plasma instrumentation. Ebert RW; Allegrini F; Fuselier SA; Nicolaou G; Bedworth P; Sinton S; Trattner KJ Rev Sci Instrum; 2014 Mar; 85(3):033302. PubMed ID: 24689570 [TBL] [Abstract][Full Text] [Related]
13. Detailed Monte Carlo Simulation of electron transport and electron energy loss spectra. Attarian Shandiz M; Salvat F; Gauvin R Scanning; 2016 Nov; 38(6):475-491. PubMed ID: 26512795 [TBL] [Abstract][Full Text] [Related]
14. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy. Testa M; Schümann J; Lu HM; Shin J; Faddegon B; Perl J; Paganetti H Med Phys; 2013 Dec; 40(12):121719. PubMed ID: 24320505 [TBL] [Abstract][Full Text] [Related]
15. Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering. Kirian RA; Schmidt KE; Wang X; Doak RB; Spence JC Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011921. PubMed ID: 21867227 [TBL] [Abstract][Full Text] [Related]
16. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619 [TBL] [Abstract][Full Text] [Related]
17. 3D-specific absorption rate estimation from high-intensity focused ultrasound sonications using the Green's function heat kernel. Freeman NJ; Odéen H; Parker DL Med Phys; 2018 Jul; 45(7):3109-3119. PubMed ID: 29772066 [TBL] [Abstract][Full Text] [Related]
18. Precise size distribution measurement of aerosol particles and fog droplets in the open atmosphere. Di H; Wang Z; Hua D Opt Express; 2019 Jun; 27(12):A890-A908. PubMed ID: 31252863 [TBL] [Abstract][Full Text] [Related]
19. A systematic study of Rayleigh-Brillouin scattering in air, N₂, and O₂ gases. Gu Z; Ubachs W J Chem Phys; 2014 Sep; 141(10):104320. PubMed ID: 25217929 [TBL] [Abstract][Full Text] [Related]
20. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: creation of an oncology database. Papadimitroulas P; Loudos G; Le Maitre A; Hatt M; Tixier F; Efthimiou N; Nikiforidis GC; Visvikis D; Kagadis GC Med Phys; 2013 Nov; 40(11):112506. PubMed ID: 24320465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]