These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36319402)

  • 1. The four-component DFT method for the calculation of the EPR g-tensor using a restricted magnetically balanced basis and London atomic orbitals.
    Misenkova D; Lemken F; Repisky M; Noga J; Malkina OL; Komorovsky S
    J Chem Phys; 2022 Oct; 157(16):164114. PubMed ID: 36319402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals.
    Komorovský S; Repiský M; Malkina OL; Malkin VG
    J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.
    Komorovsky S; Repisky M; Ruud K; Malkina OL; Malkin VG
    J Phys Chem A; 2013 Dec; 117(51):14209-19. PubMed ID: 24283465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.
    Cheng L; Xiao Y; Liu W
    J Chem Phys; 2009 Dec; 131(24):244113. PubMed ID: 20059060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-Relativistic Calculation of EPR
    Franzke YJ; Yu JM
    J Chem Theory Comput; 2022 Apr; 18(4):2246-2266. PubMed ID: 35354319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory.
    Ilias M; Saue T; Enevoldsen T; Jensen HJ
    J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4-Component relativistic magnetically induced current density using London atomic orbitals.
    Sulzer D; Olejniczak M; Bast R; Saue T
    Phys Chem Chem Phys; 2011 Dec; 13(46):20682-9. PubMed ID: 22080205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of electronic g-tensors using coupled cluster theory.
    Gauss J; Kállay M; Neese F
    J Phys Chem A; 2009 Oct; 113(43):11541-9. PubMed ID: 19848425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gauge-origin dependence in electronic g-tensor calculations.
    Glasbrenner M; Vogler S; Ochsenfeld C
    J Chem Phys; 2018 Jun; 148(21):214101. PubMed ID: 29884060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin invariant full optical rotation tensor in the length dipole gauge without London atomic orbitals.
    Caricato M; Balduf T
    J Chem Phys; 2021 Jul; 155(2):024118. PubMed ID: 34266245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the EPR g-tensor from auxiliary density functional theory.
    Zuniga-Gutierrez B; Medel-Juarez V; Varona A; González Ramírez HN; Flores-Moreno R
    J Chem Phys; 2020 Jan; 152(1):014105. PubMed ID: 31914741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis.
    Olejniczak M; Bast R; Saue T; Pecul M
    J Chem Phys; 2012 Jan; 136(1):014108. PubMed ID: 22239770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basis Set Dependence of Optical Rotation Calculations with Different Choices of Gauge.
    Parsons T; Balduf T; Cheeseman JR; Caricato M
    J Phys Chem A; 2022 Mar; 126(11):1861-1870. PubMed ID: 35271772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculations of nuclear magnetic shielding constants based on the exact two-component relativistic method.
    Yoshizawa T; Hada M
    J Chem Phys; 2017 Oct; 147(15):154104. PubMed ID: 29055334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the magnetic properties of nanodiamonds: Electronic g-tensor calculations.
    Masys Š; Rinkevicius Z; Tamulienė J
    J Chem Phys; 2019 Jul; 151(4):044305. PubMed ID: 31370534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of finite size nuclei in relativistic four-component calculations of hyperfine structure.
    Malkin E; Repiský M; Komorovský S; Mach P; Malkina OL; Malkin VG
    J Chem Phys; 2011 Jan; 134(4):044111. PubMed ID: 21280691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach.
    Cheng L; Gauss J; Stanton JF
    J Chem Phys; 2013 Aug; 139(5):054105. PubMed ID: 23927241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic Effects in Magnetic Circular Dichroism: Restricted Magnetic Balance and Temperature Dependence.
    Sun S; Li X
    J Chem Theory Comput; 2020 Jul; 16(7):4533-4542. PubMed ID: 32428406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation Energies from Real-Time Propagation of the Four-Component Dirac-Kohn-Sham Equation.
    Repisky M; Konecny L; Kadek M; Komorovsky S; Malkin OL; Malkin VG; Ruud K
    J Chem Theory Comput; 2015 Mar; 11(3):980-91. PubMed ID: 26579752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.