These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36319465)

  • 21. A Facile and Scalable Approach in the Fabrication of Tailored 3D Graphene Foam via Freeze Drying.
    Thomas T; Agarwal A
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33670345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Sensitive Composite Foam Bodily Sensors Based on the g-Putty Ink Soaking Procedure.
    Boland CS; O'Driscoll DP; Kelly AG; Boland JB; Coleman JN
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60489-60497. PubMed ID: 34881569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High porosity and light weight graphene foam heat sink and phase change material container for thermal management.
    Zehri A; Samani MK; Latorre MG; Nylander A; Nilsson T; Fu Y; Wang N; Ye L; Liu J
    Nanotechnology; 2020 Jun; 31(42):424003. PubMed ID: 32597397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors.
    Zhong W; Ding X; Li W; Shen C; Yadav A; Chen Y; Bao M; Jiang H; Wang D
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31375016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretchable Sensors and Electro-Thermal Actuators with Self-Sensing Capability Using the Laser-Induced Graphene Technology.
    Wang H; Zhao Z; Liu P; Pan Y; Guo X
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41283-41295. PubMed ID: 36037172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unconventional and Dynamically Anisotropic Thermal Conductivity in Compressed Flexible Graphene Foams.
    Xiong Z; Marconnet A; Ruan X
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48960-48966. PubMed ID: 36256868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and Functionalization of 3D Nano-graphene Materials: Graphene Aerogels and Graphene Macro Assemblies.
    Campbell PG; Worsley MA; Hiszpanski AM; Baumann TF; Biener J
    J Vis Exp; 2015 Nov; (105):e53235. PubMed ID: 26574930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection.
    Pang Y; Yang Z; Han X; Jian J; Li Y; Wang X; Qiao Y; Yang Y; Ren TL
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44173-44182. PubMed ID: 30465422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets.
    Rinaldi A; Tamburrano A; Fortunato M; Sarto MS
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-voltage Driven Graphene Foam Thermoacoustic Speaker.
    Fei W; Zhou J; Guo W
    Small; 2015 May; 11(19):2252-6. PubMed ID: 25510730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Cut-Resistant and Highly Restorable Graphene Foam.
    Liang Y; Liu F; Deng Y; Zhou Q; Cheng Z; Zhang P; Xiao Y; Lv L; Liang H; Han Q; Shao H; Qu L
    Small; 2018 Sep; 14(38):e1801916. PubMed ID: 30141574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.
    Qin Y; Peng Q; Ding Y; Lin Z; Wang C; Li Y; Xu F; Li J; Yuan Y; He X; Li Y
    ACS Nano; 2015 Sep; 9(9):8933-41. PubMed ID: 26301319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.
    Li C; Qiu L; Zhang B; Li D; Liu CY
    Adv Mater; 2016 Feb; 28(7):1510-6. PubMed ID: 26643876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Hybrid Syntactic Foam-Based Open-Cell Foam with Reversible Actuation.
    Sarrafan S; Li G
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51404-51419. PubMed ID: 36331881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-Dimensional Graphene Composite Containing Graphene-SiO₂ Nanoballs and Its Potential Application in Stress Sensors.
    Zhao B; Sun T; Zhou X; Liu X; Li X; Zhou K; Dong L; Wei D
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30875958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoelectric Responsive Shape Memory Graphene/Hydro-Epoxy Composites for Actuators.
    Wang Y; Tian W; Xie J; Liu Y
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain Sensing Based on Multiscale Composite Materials Reinforced with Graphene Nanoplatelets.
    Moriche R; Prolongo SG; Sánchez M; Jiménez-Suárez A; Campo M; Ureña A
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27842356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional highly conductive graphene-silver nanowire hybrid foams for flexible and stretchable conductors.
    Wu C; Fang L; Huang X; Jiang P
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21026-34. PubMed ID: 25376385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management.
    Liang G; Zhang J; An S; Tang J; Ju S; Bai S; Jiang D
    MethodsX; 2021; 8():101385. PubMed ID: 34430281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors.
    Huang H; Tang Y; Xu L; Tang S; Du Y
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10248-57. PubMed ID: 24936935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.