These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36319471)

  • 1. Coupling Cobalt Phthalocyanine Molecules on 3D Nitrogen-Doped Vertical Graphene Arrays for Highly Efficient and Robust CO
    Kong X; Liu G; Tian S; Bu S; Gao Q; Liu B; Lee CS; Wang P; Zhang W
    Small; 2022 Dec; 18(51):e2204615. PubMed ID: 36319471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing CO
    Lin L; Liu T; Xiao J; Li H; Wei P; Gao D; Nan B; Si R; Wang G; Bao X
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22408-22413. PubMed ID: 32886835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Catalysis over Iron-Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO
    Lin L; Li H; Yan C; Li H; Si R; Li M; Xiao J; Wang G; Bao X
    Adv Mater; 2019 Oct; 31(41):e1903470. PubMed ID: 31441152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphdiyne/Graphene Heterostructure: A Universal 2D Scaffold Anchoring Monodispersed Transition-Metal Phthalocyanines for Selective and Durable CO
    Gu H; Zhong L; Shi G; Li J; Yu K; Li J; Zhang S; Zhu C; Chen S; Yang C; Kong Y; Chen C; Li S; Zhang J; Zhang L
    J Am Chem Soc; 2021 Jun; 143(23):8679-8688. PubMed ID: 34077183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure Design Strategy for Molecularly Dispersed Cobalt Phthalocyanine and Efficient Mass Transport in CO
    Yue P; Zhong L; Deng Y; Li J; Zhang L; Ye D; Zhu X; Fu Q; Liao Q
    Small; 2023 Jun; 19(24):e2300051. PubMed ID: 36896999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic Defect-Rich Graphene Coupled Cobalt Phthalocyanine for Robust Electrochemical Reduction of Carbon Dioxide.
    Liang F; Zhang J; Hu Z; Ma C; Ni W; Zhang Y; Zhang S
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25523-25532. PubMed ID: 34009943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailored Local Electronic Environment of Co-N
    Huang M; Chen B; Zhang H; Jin Y; Zhi Q; Yang T; Wang K; Jiang J
    Small Methods; 2024 Apr; ():e2301652. PubMed ID: 38659342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced CO
    Chen C; Sun X; Yang D; Lu L; Wu H; Zheng L; An P; Zhang J; Han B
    Chem Sci; 2019 Feb; 10(6):1659-1663. PubMed ID: 30842829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt Phthalocyanine Cross-Linked Polypyrrole for Efficient Electroreduction of Low Concentration CO
    Chen JM; Xie WJ; Yang ZW; He LN
    ChemSusChem; 2022 Dec; 15(23):e202201455. PubMed ID: 36163546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Regulation of Coupled Phthalocyanine-Porphyrin Covalent Organic Frameworks to Highly Active and Selective Electrocatalytic CO
    Yuan J; Chen S; Zhang Y; Li R; Zhang J; Peng T
    Adv Mater; 2022 Jul; 34(30):e2203139. PubMed ID: 35654012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Langmuir-Blodgett Monolayer of Cobalt Phthalocyanine as Ultralow Loading Single-Atom Catalyst for Highly Efficient H
    Jeong DS; Lee HJ; Park YJ; Hwang H; Ma KY; Kim M; Lim JS; Joo SH; Yang J; Shin HS
    ACS Nano; 2023 Dec; 17(23):23936-23943. PubMed ID: 37991883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Evidence for Metallic Cobalt Boosting CO
    He C; Zhang Y; Zhang Y; Zhao L; Yuan LP; Zhang J; Ma J; Hu JS
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4914-4919. PubMed ID: 31943656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO
    Soucy TL; Dean WS; Zhou J; Rivera Cruz KE; McCrory CCL
    Acc Chem Res; 2022 Feb; 55(3):252-261. PubMed ID: 35044745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphiphilic Cobalt Phthalocyanine Boosts Carbon Dioxide Reduction.
    Zhou S; Zhang LJ; Zhu L; Tung CH; Wu LZ
    Adv Mater; 2023 Oct; 35(41):e2300923. PubMed ID: 37503663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of Highly Reactive Cobalt Phthalocyanine via Electrochemical Activation for Enhanced CO
    Wu X; Zhao JY; Sun JW; Li WJ; Yuan HY; Liu PF; Dai S; Yang HG
    Small; 2023 Jun; 19(23):e2207037. PubMed ID: 36879480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous Molecular Catalysts of Metal Phthalocyanines for Electrochemical CO
    Wu Y; Liang Y; Wang H
    Acc Chem Res; 2021 Aug; ():. PubMed ID: 34347429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the Carbon Support on Heterogeneous Molecular Catalysts for Carbon Dioxide Reduction.
    Yang S; Zhou Z; Wei L; Li S; Liu S
    Chemphyschem; 2024 Jan; 25(2):e202300502. PubMed ID: 37926856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Level Oxygen Reduction Catalysts Derived from the Compounds of High-Specific-Surface-Area Pine Peel Activated Carbon and Phthalocyanine Cobalt.
    Zhao L; Lan Z; Mo W; Su J; Liang H; Yao J; Yang W
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Cobalt Phthalocyanine, Acetylene Black and Cu
    Liu J; Yu K; Qiao Z; Zhu Q; Zhang H; Jiang J
    ChemSusChem; 2023 Oct; 16(19):e202300601. PubMed ID: 37488969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the local electronic structure of a single-site Ni catalyst by co-doping a 3D graphene framework with B/N atoms toward enhanced CO
    Shao T; Duan D; Liu S; Gao C; Ji H; Xiong Y
    Nanoscale; 2022 Jan; 14(3):833-841. PubMed ID: 34985080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.