These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36319608)
1. ZmEREB92 interacts with ZmMYC2 to activate maize terpenoid phytoalexin biosynthesis upon Fusarium graminearum infection through jasmonic acid/ethylene signaling. Fu J; Wang L; Pei W; Yan J; He L; Ma B; Wang C; Zhu C; Chen G; Shen Q; Wang Q New Phytol; 2023 Feb; 237(4):1302-1319. PubMed ID: 36319608 [TBL] [Abstract][Full Text] [Related]
2. ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. Fu J; Liu Q; Wang C; Liang J; Liu L; Wang Q J Exp Bot; 2018 Jan; 69(3):497-510. PubMed ID: 29281032 [TBL] [Abstract][Full Text] [Related]
3. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Huffaker A; Kaplan F; Vaughan MM; Dafoe NJ; Ni X; Rocca JR; Alborn HT; Teal PE; Schmelz EA Plant Physiol; 2011 Aug; 156(4):2082-97. PubMed ID: 21690302 [TBL] [Abstract][Full Text] [Related]
4. Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots. Zhou S; Zhang YK; Kremling KA; Ding Y; Bennett JS; Bae JS; Kim DK; Ackerman HH; Kolomiets MV; Schmelz EA; Schroeder FC; Buckler ES; Jander G New Phytol; 2019 Mar; 221(4):2096-2111. PubMed ID: 30289553 [TBL] [Abstract][Full Text] [Related]
5. ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Fu J; Liu L; Liu Q; Shen Q; Wang C; Yang P; Zhu C; Wang Q Plant Cell Rep; 2020 Feb; 39(2):273-288. PubMed ID: 31741037 [TBL] [Abstract][Full Text] [Related]
6. Effects of elevated [CO2 ] on maize defence against mycotoxigenic Fusarium verticillioides. Vaughan MM; Huffaker A; Schmelz EA; Dafoe NJ; Christensen S; Sims J; Martins VF; Swerbilow J; Romero M; Alborn HT; Allen LH; Teal PE Plant Cell Environ; 2014 Dec; 37(12):2691-706. PubMed ID: 24689748 [TBL] [Abstract][Full Text] [Related]
7. A maize leucine-rich repeat receptor-like protein kinase mediates responses to fungal attack. Block AK; Tang HV; Hopkins D; Mendoza J; Solemslie RK; du Toit LJ; Christensen SA Planta; 2021 Sep; 254(4):73. PubMed ID: 34529190 [TBL] [Abstract][Full Text] [Related]
8. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. Fu J; Pei W; He L; Ma B; Tang C; Zhu L; Wang L; Zhong Y; Chen G; Wang Q; Wang Q PLoS Genet; 2023 Nov; 19(11):e1011052. PubMed ID: 37976306 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Vaughan MM; Christensen S; Schmelz EA; Huffaker A; McAuslane HJ; Alborn HT; Romero M; Allen LH; Teal PE Plant Cell Environ; 2015 Nov; 38(11):2195-207. PubMed ID: 25392907 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Ge C; Tang C; Zhu YX; Wang GF Gene; 2021 Jan; 764():145078. PubMed ID: 32858175 [TBL] [Abstract][Full Text] [Related]
11. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related]
12. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Yang C; Li W; Cao J; Meng F; Yu Y; Huang J; Jiang L; Liu M; Zhang Z; Chen X; Miyamoto K; Yamane H; Zhang J; Chen S; Liu J Plant J; 2017 Jan; 89(2):338-353. PubMed ID: 27701783 [TBL] [Abstract][Full Text] [Related]
13. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. Lanubile A; Ferrarini A; Maschietto V; Delledonne M; Marocco A; Bellin D BMC Genomics; 2014 Aug; 15(1):710. PubMed ID: 25155950 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi. Allardyce JA; Rookes JE; Hussain HI; Cahill DM Funct Integr Genomics; 2013 Jun; 13(2):217-28. PubMed ID: 23430324 [TBL] [Abstract][Full Text] [Related]
15. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Christensen SA; Nemchenko A; Park YS; Borrego E; Huang PC; Schmelz EA; Kunze S; Feussner I; Yalpani N; Meeley R; Kolomiets MV Mol Plant Microbe Interact; 2014 Nov; 27(11):1263-76. PubMed ID: 25122482 [TBL] [Abstract][Full Text] [Related]
16. BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize. Horevaj P; Bluhm BH Mol Plant Pathol; 2012 Jun; 13(5):431-44. PubMed ID: 22044756 [TBL] [Abstract][Full Text] [Related]
17. Coronatine-Induced Maize Defense against Liu M; Sui Y; Yu C; Wang X; Zhang W; Wang B; Yan J; Duan L J Fungi (Basel); 2023 Nov; 9(12):. PubMed ID: 38132756 [TBL] [Abstract][Full Text] [Related]
18. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Di X; Gomila J; Takken FLW Mol Plant Pathol; 2017 Sep; 18(7):1024-1035. PubMed ID: 28390170 [TBL] [Abstract][Full Text] [Related]
19. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Atanasova-Penichon V; Pons S; Pinson-Gadais L; Picot A; Marchegay G; Bonnin-Verdal MN; Ducos C; Barreau C; Roucolle J; Sehabiague P; Carolo P; Richard-Forget F Mol Plant Microbe Interact; 2012 Dec; 25(12):1605-16. PubMed ID: 23035912 [TBL] [Abstract][Full Text] [Related]
20. Chemical Activation of the Ethylene Signaling Pathway Promotes Foroud NA; Pordel R; Goyal RK; Ryabova D; Eranthodi A; Chatterton S; Kovalchuk I Phytopathology; 2019 May; 109(5):796-803. PubMed ID: 30540553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]