These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 36319952)

  • 1. MLAGO: machine learning-aided global optimization for Michaelis constant estimation of kinetic modeling.
    Maeda K; Hatae A; Sakai Y; Boogerd FC; Kurata H
    BMC Bioinformatics; 2022 Nov; 23(1):455. PubMed ID: 36319952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-learning model selection and parameter estimation from kinetic data of complex first-order reaction systems.
    Zimányi L; Sipos Á; Sarlós F; Nagypál R; Groma GI
    PLoS One; 2021; 16(8):e0255675. PubMed ID: 34370771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian kinetic modeling for tracer-based metabolomic data.
    Zhang X; Su Y; Lane AN; Stromberg AJ; Fan TWM; Wang C
    BMC Bioinformatics; 2023 Mar; 24(1):108. PubMed ID: 36949395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems.
    Gábor A; Villaverde AF; Banga JR
    BMC Syst Biol; 2017 May; 11(1):54. PubMed ID: 28476119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ASAS-NANP symposium: Mathematical Modeling in Animal Nutrition: The power of identifiability analysis for dynamic modeling in animal science:a practitioner approach.
    Muñoz-Tamayo R; Tedeschi LO
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37997927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter optimization by using differential elimination: a general approach for introducing constraints into objective functions.
    Nakatsui M; Horimoto K; Okamoto M; Tokumoto Y; Miyake J
    BMC Syst Biol; 2010 Sep; 4 Suppl 2(Suppl 2):S9. PubMed ID: 20840736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter estimation for stiff equations of biosystems using radial basis function networks.
    Matsubara Y; Kikuchi S; Sugimoto M; Tomita M
    BMC Bioinformatics; 2006 Apr; 7():230. PubMed ID: 16643665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies.
    Dräger A; Kronfeld M; Ziller MJ; Supper J; Planatscher H; Magnus JB; Oldiges M; Kohlbacher O; Zell A
    BMC Syst Biol; 2009 Jan; 3():5. PubMed ID: 19144170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global optimization of the Michaelis-Menten parameters using physiologically-based pharmacokinetic (PBPK) modeling and chloroform vapor uptake data in F344 rats.
    Evans MV; Eklund CR; Williams DN; Sey YM; Simmons JE
    Inhal Toxicol; 2020 Feb; 32(3):97-109. PubMed ID: 32241199
    [No Abstract]   [Full Text] [Related]  

  • 11. Hybrid optimization method with general switching strategy for parameter estimation.
    Balsa-Canto E; Peifer M; Banga JR; Timmer J; Fleck C
    BMC Syst Biol; 2008 Mar; 2():26. PubMed ID: 18366722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Objective Optimization Tuning Framework for Kinetic Parameter Selection and Estimation.
    Boada Y; Picó J; Vignoni A
    Methods Mol Biol; 2022; 2385():65-89. PubMed ID: 34888716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Bee Colony algorithm in estimating kinetic parameters for yeast fermentation pathway.
    Ismail AM; Remli MA; Choon YW; Nasarudin NA; Ismail NN; Ismail MA; Mohamad MS
    J Integr Bioinform; 2023 Jun; 20(2):. PubMed ID: 37341516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models.
    Baker SM; Schallau K; Junker BH
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter estimation and model selection in computational biology.
    Lillacci G; Khammash M
    PLoS Comput Biol; 2010 Mar; 6(3):e1000696. PubMed ID: 20221262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global optimization using Gaussian processes to estimate biological parameters from image data.
    Barac D; Multerer MD; Iber D
    J Theor Biol; 2019 Nov; 481():233-248. PubMed ID: 30529487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitting enzyme kinetic data with KinTek Global Kinetic Explorer.
    Johnson KA
    Methods Enzymol; 2009; 467():601-626. PubMed ID: 19897109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter estimation of dynamic biological network models using integrated fluxes.
    Liu Y; Gunawan R
    BMC Syst Biol; 2014 Nov; 8():127. PubMed ID: 25403239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate and reliable estimation of kinetic parameters for environmental engineering applications: A global, multi objective, Bayesian optimization approach.
    Manheim DC; Detwiler RL
    MethodsX; 2019; 6():1398-1414. PubMed ID: 31245280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of enzyme kinetic parameters based on statistical learning.
    Borger S; Liebermeister W; Klipp E
    Genome Inform; 2006; 17(1):80-7. PubMed ID: 17503358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.