These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 36319968)

  • 1. The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images.
    Zhang R; Wei Y; Shi F; Ren J; Zhou Q; Li W; Chen B
    BMC Cancer; 2022 Nov; 22(1):1118. PubMed ID: 36319968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography.
    Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y
    Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined non-enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub-centimeter pulmonary solid nodules.
    Lin RY; Zheng YN; Lv FJ; Fu BJ; Li WJ; Liang ZR; Chu ZG
    Med Phys; 2023 May; 50(5):2835-2843. PubMed ID: 36810703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules Using Computed Tomography Radiomics Parameters.
    Liang L; Zhang H; Lei H; Zhou H; Wu Y; Shen J
    Technol Cancer Res Treat; 2022; 21():15330338221119748. PubMed ID: 36259167
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of CT window settings on size measurements of the solid component in subsolid nodules: evaluation of prediction efficacy of the degree of pathological malignancy in lung adenocarcinoma.
    Li Q; Gu YF; Fan L; Li QC; Xiao Y; Liu SY
    Br J Radiol; 2018 Jul; 91(1088):20180251. PubMed ID: 29791206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: a multicenter study.
    Wu G; Woodruff HC; Sanduleanu S; Refaee T; Jochems A; Leijenaar R; Gietema H; Shen J; Wang R; Xiong J; Bian J; Wu J; Lambin P
    Eur Radiol; 2020 May; 30(5):2680-2691. PubMed ID: 32006165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiating minimally invasive and invasive adenocarcinomas in patients with solitary sub-solid pulmonary nodules with a radiomics nomogram.
    Feng B; Chen X; Chen Y; Li Z; Hao Y; Zhang C; Li R; Liao Y; Zhang X; Huang Y; Long W
    Clin Radiol; 2019 Jul; 74(7):570.e1-570.e11. PubMed ID: 31056198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting malignant potential of subsolid nodules: can radiomics preempt longitudinal follow up CT?
    Digumarthy SR; Padole AM; Rastogi S; Price M; Mooradian MJ; Sequist LV; Kalra MK
    Cancer Imaging; 2019 Jun; 19(1):36. PubMed ID: 31182167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas.
    Feng B; Chen X; Chen Y; Lu S; Liu K; Li K; Liu Z; Hao Y; Li Z; Zhu Z; Yao N; Liang G; Zhang J; Long W; Liu X
    Eur Radiol; 2020 Dec; 30(12):6497-6507. PubMed ID: 32594210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images.
    Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D
    Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing of risk models for small solid and subsolid pulmonary nodules based on clinical and quantitative radiomics features.
    Zhang R; Sun H; Chen B; Xu R; Li W
    J Thorac Dis; 2021 Jul; 13(7):4156-4168. PubMed ID: 34422345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules.
    Liu J; Qi L; Wang Y; Li F; Chen J; Cui S; Cheng S; Zhou Z; Li L; Wang J
    Eur Radiol Exp; 2024 Jan; 8(1):8. PubMed ID: 38228868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction.
    Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M
    Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.
    Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y
    Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics for identifying lung adenocarcinomas with predominant lepidic growth manifesting as large pure ground-glass nodules on CT images.
    Xiong Z; Jiang Y; Tian D; Zhang J; Guo Y; Li G; Qin D; Li Z
    PLoS One; 2022; 17(6):e0269356. PubMed ID: 35749350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnosis of Invasive Lung Adenocarcinoma Based on Chest CT Radiomic Features of Part-Solid Pulmonary Nodules: A Multicenter Study.
    Wu G; Woodruff HC; Shen J; Refaee T; Sanduleanu S; Ibrahim A; Leijenaar RTH; Wang R; Xiong J; Bian J; Wu J; Lambin P
    Radiology; 2020 Nov; 297(2):451-458. PubMed ID: 32840472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined model integrating deep learning, radiomics, and clinical data to classify lung nodules at chest CT.
    Lin CY; Guo SM; Lien JJ; Lin WT; Liu YS; Lai CH; Hsu IL; Chang CC; Tseng YL
    Radiol Med; 2024 Jan; 129(1):56-69. PubMed ID: 37971691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
    Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W
    Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram.
    Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F
    Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.
    Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J
    Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.