These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36320271)

  • 1. Preparation and characterization of permeability and mechanical properties of three-dimensional porous stainless steel.
    Li C; Zhou Z
    RSC Adv; 2022 Sep; 12(43):28079-28087. PubMed ID: 36320271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Tensile Properties of Novel Porous Plates Made by Stainless Steel Wire Mesh and Powder Composites.
    Lin S; Zhou Z
    Materials (Basel); 2021 Feb; 14(3):. PubMed ID: 33535683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates.
    Duan L; Zhou Z; Yao B
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and Properties of Porous High-N Ni-Free Austenitic Stainless Steel Fabricated by Powder Metallurgical Route.
    Hu L; Ngai T; Peng H; Li L; Zhou F; Peng Z
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29932106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charpy Impact Behavior of a Novel Stainless Steel Powder Wire Mesh Composite Porous Plate.
    Li C; Zhou Z
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams.
    Meenashisundaram GK; Xu Z; Nai MLS; Lu S; Ten JS; Wei J
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing, Structural Characterization and Comparative Studies on Uniaxial Tensile Properties of a New Type of Porous Twisted Wire Material.
    Wu F; Zhou Z; Duan L; Xiao Z
    Materials (Basel); 2015 Aug; 8(9):5606-5620. PubMed ID: 28793526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of 17-4 PH stainless steel foam for implant applications.
    Mutlu I; Oktay E
    Biomed Mater Eng; 2011; 21(4):223-33. PubMed ID: 22182790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing and mechanical properties of autogenous titanium implant materials.
    Wen CE; Yamada Y; Shimojima K; Chino Y; Asahina T; Mabuchi M
    J Mater Sci Mater Med; 2002 Apr; 13(4):397-401. PubMed ID: 15348615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of biodegradable Zn scaffold by vacuum heating-press sintering for bone repair.
    Yao R; Han S; Sun Y; Zhao Y; Shan R; Liu L; Yao X; Hang R
    Biomater Adv; 2022 Jul; 138():212968. PubMed ID: 35913245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Ni Interlayer on the Hot-Rolled and Quenched Stainless Steel Clad Plate.
    Lin Z; Wang S; He J; Liu B; Chen C; Feng J; Zhang X; Fang W; Yin F
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33266095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the Surface Characteristics of Stainless Steel, TMA, Timolium, and Titanium-niobium Wires: An in vivo Scanning Electron Microscope Study.
    Babu KP; Keerthi VN; Madathody D; Prasanna AL; Gopinath V; Kumar MS; Kumar AN
    J Contemp Dent Pract; 2016 May; 17(5):372-6. PubMed ID: 27443362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.
    Čapek J; Machová M; Fousová M; Kubásek J; Vojtěch D; Fojt J; Jablonská E; Lipov J; Ruml T
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():631-9. PubMed ID: 27612756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.
    Yao B; Zhou Z; Duan L; Xiao Z
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility.
    Liu J; Ruan J; Chang L; Yang H; Ruan W
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():503-512. PubMed ID: 28576015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.
    He G; Liu P; Tan Q; Jiang G
    J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.
    Jain R; Podworny N; Hearn T; Anderson GI; Schemitsch EH
    J Orthop Trauma; 1997 Oct; 11(7):490-5. PubMed ID: 9334950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres.
    Zou C; Zhang E; Li M; Zeng S
    J Mater Sci Mater Med; 2008 Jan; 19(1):401-5. PubMed ID: 17607525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.
    Li F; Li J; Kou H; Huang T; Zhou L
    J Mater Sci Mater Med; 2015 Sep; 26(9):233. PubMed ID: 26384823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.