These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 36320459)
1. Deciphering the selectivity descriptors of heterogeneous metal phthalocyanine electrocatalysts for hydrogen peroxide production. Yuan Y; Li H; Jiang Z; Lin Z; Tang Y; Wang H; Liang Y Chem Sci; 2022 Sep; 13(37):11260-11265. PubMed ID: 36320459 [TBL] [Abstract][Full Text] [Related]
2. Ni clusters immobilized on oxygen-rich siloxene nanosheets for efficient electrocatalytic oxygen reduction toward H Hu H; Ma K; Yang Y; Jin N; Zhang L; Qian J; Han L Dalton Trans; 2024 Mar; 53(10):4823-4832. PubMed ID: 38372568 [TBL] [Abstract][Full Text] [Related]
3. Highly coordinative molecular cobalt-phthalocyanine electrocatalyst on an oxidized single-walled carbon nanotube for efficient hydrogen peroxide production. Li Y; Cheng H; Wang M; Xu J; Guan L Mater Horiz; 2024 May; 11(10):2517-2527. PubMed ID: 38497122 [TBL] [Abstract][Full Text] [Related]
4. Greatly Facilitated Two-Electron Electroreduction of Oxygen into Hydrogen Peroxide over TiO Chen Q; Ma C; Yan S; Liang J; Dong K; Luo Y; Liu Q; Li T; Wang Y; Yue L; Zheng B; Liu Y; Gao S; Jiang Z; Li W; Sun X ACS Appl Mater Interfaces; 2021 Oct; 13(39):46659-46664. PubMed ID: 34569784 [TBL] [Abstract][Full Text] [Related]
5. Anion-tuned nickel chalcogenides electrocatalysts for efficient 2e Sun Q; Xu G; Xiong B; Chen L; Shi J Nano Res; 2023; 16(4):4729-4735. PubMed ID: 36465524 [TBL] [Abstract][Full Text] [Related]
6. Doped-Sn Enhanced the Performance of BiOCl Nanosheet on Electrocatalytic Synthesis of Hydrogen Peroxide. Zhang S; Wang Y; Jiang C; Li Y; Bao Z; Zhong H; Fang W; Wang J Small; 2024 Dec; 20(49):e2403862. PubMed ID: 39308433 [TBL] [Abstract][Full Text] [Related]
7. In Situ Carbon Thermal Reduction to Enrich Sulfur-Vacancy in Nickel Disulfide Cathode for Efficient Synthesizing Hydrogen Peroxide. Liu S; Ren H; Tian F; Geng L; Cui W; Chen J; Lin Y; Wu M; Li Z Small; 2024 Dec; 20(51):e2405683. PubMed ID: 39396368 [TBL] [Abstract][Full Text] [Related]
8. Electronic structure modification of metal phthalocyanines by a carbon nanotube support for efficient oxygen reduction to hydrogen peroxide. Lee Y; Lee C; Back S; Sa YJ Nanoscale; 2024 May; 16(19):9545-9557. PubMed ID: 38660774 [TBL] [Abstract][Full Text] [Related]
9. Electronic Metal-Support Interactions Boost *OOH Intermediate Generation in Cu/In Liu Y; Wang P; Xie L; Xia Y; Zhan S; Hu W; Li Y Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202319470. PubMed ID: 38566301 [TBL] [Abstract][Full Text] [Related]
10. Dipole-Dipole Tuned Electronic Reconfiguration of Defective Carbon Sites for Efficient Oxygen Reduction into H Su J; Jiang L; Xiao B; Liu Z; Wang H; Zhu Y; Wang J; Zhu X Small; 2024 Jun; 20(24):e2310317. PubMed ID: 38155499 [TBL] [Abstract][Full Text] [Related]
11. Efficient H Chen H; Chen R; Liu S; Zhou Y; Chen X; Cai J; Lan X; Jiang H; Lin L; Sun Z Chempluschem; 2024 Nov; 89(11):e202400422. PubMed ID: 39012587 [TBL] [Abstract][Full Text] [Related]
12. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Woo J; Lim JS; Kim JH; Joo SH Chem Commun (Camb); 2021 Jul; 57(60):7350-7361. PubMed ID: 34231572 [TBL] [Abstract][Full Text] [Related]
13. First-principles study of electrochemical H Wang J; Xing J; Wang Y; Zhang X; Zhang S J Mol Graph Model; 2024 Nov; 132():108847. PubMed ID: 39163731 [TBL] [Abstract][Full Text] [Related]
14. Promotion of the Efficient Electrocatalytic Production of H Sun L; Sun L; Huo L; Zhao H Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049283 [TBL] [Abstract][Full Text] [Related]
15. Understanding the preparative chemistry of atomically dispersed nickel catalysts for achieving high-efficiency H Lim JS; Woo J; Bae G; Yoo S; Kim J; Kim JH; Lee JH; Sa YJ; Jang JW; Hwang YJ; Choi CH; Joo SH Chem Sci; 2024 Aug; 15(34):13807-13822. PubMed ID: 39211491 [TBL] [Abstract][Full Text] [Related]
16. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production. Peng W; Liu J; Liu X; Wang L; Yin L; Tan H; Hou F; Liang J Nat Commun; 2023 Jul; 14(1):4430. PubMed ID: 37481579 [TBL] [Abstract][Full Text] [Related]
17. Recent Progress of Transition Metal Selenides for Electrochemical Oxygen Reduction to Hydrogen Peroxide: From Catalyst Design to Electrolyzers Application. Wang Y; Han C; Ma L; Duan T; Du Y; Wu J; Zou JJ; Gao J; Zhu XD; Zhang YC Small; 2024 May; 20(22):e2309448. PubMed ID: 38362699 [TBL] [Abstract][Full Text] [Related]
18. Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts. Sun Y; Silvioli L; Sahraie NR; Ju W; Li J; Zitolo A; Li S; Bagger A; Arnarson L; Wang X; Moeller T; Bernsmeier D; Rossmeisl J; Jaouen F; Strasser P J Am Chem Soc; 2019 Aug; 141(31):12372-12381. PubMed ID: 31306016 [TBL] [Abstract][Full Text] [Related]
19. Toward More Efficient Carbon-Based Electrocatalysts for Hydrogen Peroxide Synthesis: Roles of Cobalt and Carbon Defects in Two-Electron ORR Catalysis. Zheng Y; Wang P; Huang WH; Chen CL; Jia Y; Dai S; Li T; Zhao Y; Qiu Y; Waterhouse GIN; Chen G Nano Lett; 2023 Feb; 23(3):1100-1108. PubMed ID: 36692959 [TBL] [Abstract][Full Text] [Related]
20. Progress of Metal Chalcogenides as Catalysts for Efficient Electrosynthesis of Hydrogen Peroxide. Kim JH; Lee JG; Choi MJ Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]