BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36320858)

  • 1. Magnetic mesoporous silica nanoparticles modified by phosphonate functionalized ionic liquid for selective enrichment of phosphopeptides.
    Jiang Y; Liang W; Wang B; Feng Q; Xia C; Wang Q; Yan Y; Zhao L; Cui W; Liang H
    RSC Adv; 2022 Sep; 12(41):26859-26865. PubMed ID: 36320858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophilic nanocomposite adsorbents modified
    Xia C; Wang Q; Liang W; Wang B; Feng Q; Zhou C; Xie Y; Yan Y; Zhao L; Jiang B; Cui W; Liang H
    J Mater Chem B; 2022 Oct; 10(39):7967-7978. PubMed ID: 36124862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of Ti
    He Y; Zhang S; Zhong C; Yang Y; Li G; Ji Y; Lin Z
    Talanta; 2021 Dec; 235():122789. PubMed ID: 34517647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples.
    Hu X; Li Y; Miao A; Deng C
    Mikrochim Acta; 2020 Jun; 187(7):400. PubMed ID: 32572637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins.
    Gao L; Tao J; Qi L; Jiang X; Shi H; Liu Y; Di B; Wang Y; Yan F
    Anal Chim Acta; 2022 Feb; 1195():339430. PubMed ID: 35090649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides.
    Li XS; Pan YN; Zhao Y; Yuan BF; Guo L; Feng YQ
    J Chromatogr A; 2013 Nov; 1315():61-9. PubMed ID: 24090595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides.
    Cao L; Zhao Y; Chu Z; Zhang X; Zhang W
    Talanta; 2020 Jan; 206():120165. PubMed ID: 31514902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva.
    Li Y; Liu L; Wu H; Deng C
    Anal Chim Acta; 2019 Nov; 1079():111-119. PubMed ID: 31387701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.
    Yao J; Sun N; Deng C; Zhang X
    Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO
    Irfan A; Feng W; Liu K; Habib K; Qu Q; Yang L
    Talanta; 2021 Dec; 235():122737. PubMed ID: 34517605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytic acid functionalized Fe
    Zhang K; Hu D; Deng S; Han M; Wang X; Liu H; Liu Y; Xie M
    Mikrochim Acta; 2019 Jan; 186(2):68. PubMed ID: 30627783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis.
    Zhao L; Wu R; Han G; Zhou H; Ren L; Tian R; Zou H
    J Am Soc Mass Spectrom; 2008 Aug; 19(8):1176-86. PubMed ID: 18502663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides.
    Sun N; Deng C; Li Y; Zhang X
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11799-804. PubMed ID: 24983703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced specificity of bimetallic ions via mesoporous confinement for phosphopeptides in human saliva.
    Fang X; Liu X; Sun N; Deng C
    Talanta; 2021 Oct; 233():122587. PubMed ID: 34215077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides.
    Chen Y; Xiong Z; Peng L; Gan Y; Zhao Y; Shen J; Qian J; Zhang L; Zhang W
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16338-47. PubMed ID: 26156207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis.
    Li Y; Liu Y; Tang J; Lin H; Yao N; Shen X; Deng C; Yang P; Zhang X
    J Chromatogr A; 2007 Nov; 1172(1):57-71. PubMed ID: 17936290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring a multifunctional magnetic cationic metal-organic framework composite for synchronous enrichment of phosphopeptides/glycopeptides.
    Qi H; Li Z; Ma J; Jia Q
    J Mater Chem B; 2022 May; 10(18):3560-3566. PubMed ID: 35420609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient separation of phosphopeptides employing a Ti/Nb-functionalized core-shell structure solid-phase extraction nanosphere.
    Liu B; Wang B; Yan Y; Tang K; Ding CF
    Mikrochim Acta; 2021 Jan; 188(2):32. PubMed ID: 33415462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry.
    Li Y; Leng T; Lin H; Deng C; Xu X; Yao N; Yang P; Zhang X
    J Proteome Res; 2007 Nov; 6(11):4498-510. PubMed ID: 17900103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.