These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 36320892)

  • 1. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma.
    Sun L; Ma X; Zhang B; Qin Y; Ma J; Du Y; Chen T
    RSC Chem Biol; 2022 Oct; 3(10):1173-1197. PubMed ID: 36320892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, Reverse Transcription, Replication, and Inter-Transcription of 2'-Modified Nucleic Acids with Evolved Thermophilic Polymerases: Efforts toward Multidimensional Expansion of the Central Dogma.
    Qin Y; Ma X; Tao R; Du Y; Chen T
    ACS Synth Biol; 2023 Sep; 12(9):2616-2631. PubMed ID: 37646406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology.
    Wang G; Du Y; Ma X; Ye F; Qin Y; Wang Y; Xiang Y; Tao R; Chen T
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription, Reverse Transcription, and Amplification of Backbone-Modified Nucleic Acids with Laboratory-Evolved Thermophilic DNA Polymerases.
    Song P; Zhang R; He C; Chen T
    Curr Protoc; 2021 Jul; 1(7):e188. PubMed ID: 34232574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology.
    Hamashima K; Kimoto M; Hirao I
    Curr Opin Chem Biol; 2018 Oct; 46():108-114. PubMed ID: 30059833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Chemistry of Genetic Information Storage and Propagation through Polymerase Engineering.
    Houlihan G; Arangundy-Franklin S; Holliger P
    Acc Chem Res; 2017 Apr; 50(4):1079-1087. PubMed ID: 28383245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic alphabet expansion biotechnology by creating unnatural base pairs.
    Lee KH; Hamashima K; Kimoto M; Hirao I
    Curr Opin Biotechnol; 2018 Jun; 51():8-15. PubMed ID: 29049900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of an Unnatural Base Pair by Tool Enzymes from Bacteriophages and Its Application in the Enzymatic Preparation of DNA with an Expanded Genetic Alphabet.
    Bai J; Zou J; Cao Y; Du Y; Chen T
    ACS Synth Biol; 2023 Sep; 12(9):2676-2690. PubMed ID: 37590442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering and application of polymerases for synthetic genetics.
    Houlihan G; Arangundy-Franklin S; Holliger P
    Curr Opin Biotechnol; 2017 Dec; 48():168-179. PubMed ID: 28601700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic alphabet expansion technology by creating unnatural base pairs.
    Kimoto M; Hirao I
    Chem Soc Rev; 2020 Nov; 49(21):7602-7626. PubMed ID: 33015699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation, Optimization, and Use of Semi-Synthetic Organisms that Store and Retrieve Increased Genetic Information.
    Romesberg FE
    J Mol Biol; 2022 Apr; 434(8):167331. PubMed ID: 34710400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.
    Hirao I; Kimoto M; Yamashige R
    Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective.
    Zhu G; Song P; Wu J; Luo M; Chen Z; Chen T
    Front Bioeng Biotechnol; 2021; 9():792489. PubMed ID: 35071205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of the Genetic Alphabet: A Chemist's Approach to Synthetic Biology.
    Feldman AW; Romesberg FE
    Acc Chem Res; 2018 Feb; 51(2):394-403. PubMed ID: 29198111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building better polymerases: Engineering the replication of expanded genetic alphabets.
    Ouaray Z; Benner SA; Georgiadis MM; Richards NGJ
    J Biol Chem; 2020 Dec; 295(50):17046-17059. PubMed ID: 33004440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two are not enough: synthetic strategies and applications of unnatural base pairs.
    Dörrenhaus R; Wagner PK; Kath-Schorr S
    Biol Chem; 2023 Sep; 404(10):883-896. PubMed ID: 37354104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II.
    Oh J; Shin J; Unarta IC; Wang W; Feldman AW; Karadeema RJ; Xu L; Xu J; Chong J; Krishnamurthy R; Huang X; Romesberg FE; Wang D
    Nat Chem Biol; 2021 Aug; 17(8):906-914. PubMed ID: 34140682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Reverse Transcription with an Expanded Genetic Alphabet.
    Eggert F; Kurscheidt K; Hoffmann E; Kath-Schorr S
    Chembiochem; 2019 Jul; 20(13):1642-1645. PubMed ID: 30741472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond DNA and RNA: The Expanding Toolbox of Synthetic Genetics.
    Taylor AI; Houlihan G; Holliger P
    Cold Spring Harb Perspect Biol; 2019 Jun; 11(6):. PubMed ID: 31160351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Expanding the Genetic Code: Unnatural Base Pairs in Biological Systems].
    Mukba SA; Vlasov PK; Kolosov PM; Shuvalova EY; Egorova TV; Alkalaeva EZ
    Mol Biol (Mosk); 2020; 54(4):531-541. PubMed ID: 32799218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.