These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36320910)

  • 1. Designing inorganically functionalized magic-size II-VI clusters and unraveling their surface states.
    Ge J; Liang J; Chen X; Deng Y; Xiao P; Zhu JJ; Wang Y
    Chem Sci; 2022 Oct; 13(40):11755-11763. PubMed ID: 36320910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anion Exchange in Semiconductor Magic-Size Clusters.
    Kong X; Deng Y; Zou Y; Ge J; Wang Y
    J Am Chem Soc; 2024 Feb; 146(8):5445-5454. PubMed ID: 38304982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and Indirect Evolution of Photoluminescent Semiconductor CdS Magic-Size Clusters through Their Precursor Compounds.
    Wang D; Liu Y; Rowell N; Wang S; Zhang C; Zhang M; Luan C; Yu K
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202304329. PubMed ID: 37188865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature formation of alloy Zn
    Zhu W; Lin Z; Zhang X; Wang W; Li Y
    Nanoscale; 2022 Aug; 14(31):11210-11217. PubMed ID: 35866600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of Photoluminescent CdS Magic-Size Clusters Assisted by Adding Small Molecules with Carboxylic Group.
    He Z; Wang D; Yu Q; Zhang M; Wang S; Huang W; Luan C; Yu K
    ACS Omega; 2021 Jun; 6(22):14458-14466. PubMed ID: 34124468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Ligand Tuned Reversible Transformations in Aqueous Environments Between CdSe Magic-Size Clusters and Their Precursor Compounds.
    Chen Q; Zhang Y; Chen S; Liu Y; Zhang C; Zhang M; Yu K
    Small; 2024 Feb; 20(7):e2304277. PubMed ID: 37806760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Electron-Injection Channels of Heterostructured ZnSe@CdTe Nanocrystals for Surface-Chemistry-Involved Electrochemiluminescence.
    He Y; Yang L; Zhang F; Zhang B; Zou G
    J Phys Chem Lett; 2018 Oct; 9(20):6089-6095. PubMed ID: 30285453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformations Among Colloidal Semiconductor Magic-Size Clusters.
    He L; Luan C; Rowell N; Zhang M; Chen X; Yu K
    Acc Chem Res; 2021 Feb; 54(4):776-786. PubMed ID: 33533599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-stable nanoparticles in A(II)B(VI), (A(II) = Cd, Zn; BVI, = S, Se, Te) compounds.
    Romanyuk VR; Dmitruk IM; Barnakov YA; Belosludov RV; Kasuya A
    J Nanosci Nanotechnol; 2009 Mar; 9(3):2111-8. PubMed ID: 19435089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjustable Electrochemiluminescence from Highly Passivated CdTe/CdS Nanocrystals by Simple Surface Decoration with Counterions.
    He Y; Hou S; Yang L; Zhang F; Zou G
    Chemistry; 2018 Jul; 24(38):9592-9597. PubMed ID: 29667254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Grand Avenue to Au Nanocluster Electrochemiluminescence.
    Hesari M; Ding Z
    Acc Chem Res; 2017 Feb; 50(2):218-230. PubMed ID: 28080028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the reaction zones for CdTe magic-sized clusters and their emission properties.
    Mech SA; Ma F; Zeng C
    Nanoscale; 2022 Dec; 15(1):114-121. PubMed ID: 36508267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precursor Self-Assembly Identified as a General Pathway for Colloidal Semiconductor Magic-Size Clusters.
    Wang L; Hui J; Tang J; Rowell N; Zhang B; Zhu T; Zhang M; Hao X; Fan H; Zeng J; Han S; Yu K
    Adv Sci (Weinh); 2018 Dec; 5(12):1800632. PubMed ID: 30581693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Electrochemiluminescence of MnS:CdS@ZnS Core-Shell Quantum Dots for Ultrasensitive Detection of MicroRNA.
    Yang YT; Liu JL; Sun MF; Yuan R; Chai YQ
    Anal Chem; 2022 May; 94(18):6874-6881. PubMed ID: 35483064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient electrochemiluminescence of ruthenium complex-functionalized CdS quantum dots and their analytical application.
    Wang X; Liu H; Qi H; Gao Q; Zhang C
    J Mater Chem B; 2020 Apr; 8(16):3598-3605. PubMed ID: 31897454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of high-quality CdS/ZnSe type-II core/shell nanocrystals.
    Fang Z; Gu Z; Zhu W; Zhong X
    J Nanosci Nanotechnol; 2009 Oct; 9(10):5880-6. PubMed ID: 19908469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating Reaction Intermediates to Aqueous-Phase ZnSe Magic-Size Clusters and Quantum Dots at Room Temperature.
    Li Y; Zhang M; He L; Rowell N; Kreouzis T; Zhang C; Wang S; Luan C; Chen X; Zhang S; Yu K
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202209615. PubMed ID: 35909255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.
    Yang Y; Fang G; Wang X; Liu G; Wang S
    Biosens Bioelectron; 2016 Mar; 77():1134-43. PubMed ID: 26569444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/Cd(x)Zn(1 - x)S/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen.
    Shen H; Yuan H; Niu JZ; Xu S; Zhou C; Ma L; Li LS
    Nanotechnology; 2011 Sep; 22(37):375602. PubMed ID: 21852741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Molecular Emission Centers of Carbon Dots to Boost the Electrochemiluminescence for the Detection of Cancer Cells.
    Wang L; Zeng WJ; Yang X; Yuan R; Liang WB; Zhuo Y
    Anal Chem; 2023 Sep; 95(37):13897-13903. PubMed ID: 37682117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.