These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36320917)

  • 1. Green synthesis of water splitting electrocatalysts: IrO
    Elmaalouf M; Da Silva A; Duran S; Tard C; Comesaña-Hermo M; Gam-Derouich S; Briois V; Alloyeau D; Giraud M; Piquemal JY; Peron J
    Chem Sci; 2022 Oct; 13(40):11807-11816. PubMed ID: 36320917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Low-Iridium Oxygen Evolution Catalysts.
    Chen H; Shi L; Liang X; Wang L; Asefa T; Zou X
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19654-19658. PubMed ID: 32485084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iridium single atoms incorporated in Co
    Zhu Y; Wang J; Koketsu T; Kroschel M; Chen JM; Hsu SY; Henkelman G; Hu Z; Strasser P; Ma J
    Nat Commun; 2022 Dec; 13(1):7754. PubMed ID: 36517475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts.
    Ying Y; Godínez Salomón JF; Lartundo-Rojas L; Moreno A; Meyer R; Damin CA; Rhodes CP
    Nanoscale Adv; 2021 Apr; 3(7):1976-1996. PubMed ID: 36133093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages.
    Nai J; Tian Y; Guan X; Guo L
    J Am Chem Soc; 2013 Oct; 135(43):16082-91. PubMed ID: 23724779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation.
    Gao J; Xu CQ; Hung SF; Liu W; Cai W; Zeng Z; Jia C; Chen HM; Xiao H; Li J; Huang Y; Liu B
    J Am Chem Soc; 2019 Feb; 141(7):3014-3023. PubMed ID: 30673269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-Shell Nanostructured Ru@Ir-O Electrocatalysts for Superb Oxygen Evolution in Acid.
    Zhang J; Fu X; Xia F; Zhang W; Ma D; Zhou Y; Peng H; Wu J; Gong X; Wang D; Yue Q
    Small; 2022 Apr; 18(15):e2108031. PubMed ID: 35261199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Oxide-Support Interaction over IrO
    Zheng X; Qin M; Ma S; Chen Y; Ning H; Yang R; Mao S; Wang Y
    Adv Sci (Weinh); 2022 Apr; 9(11):e2104636. PubMed ID: 35152570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of an Iridium-Tungsten Composite with an Iridium-Rich Surface for Acidic Water Oxidation.
    Gao J; Huang X; Cai W; Wang Q; Jia C; Liu B
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25991-26001. PubMed ID: 32428393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.
    Bernicke M; Ortel E; Reier T; Bergmann A; Ferreira de Araujo J; Strasser P; Kraehnert R
    ChemSusChem; 2015 Jun; 8(11):1908-15. PubMed ID: 25958795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ce-Doped IrO
    Wang Y; Hao S; Liu X; Wang Q; Su Z; Lei L; Zhang X
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37006-37012. PubMed ID: 32709192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the role of Cl doping in the oxygen evolution reaction on cuprous oxide by DFT.
    Chen HH; Ji Y; Fan T
    Phys Chem Chem Phys; 2022 Oct; 24(41):25347-25355. PubMed ID: 36239135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel Structures as a Template Strategy to Create Shaped Iridium Electrocatalysts for Electrochemical Water Splitting.
    Park S; Shviro M; Hartmann H; Besmehn A; Mayer J; Stolten D; Carmo M
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13576-13585. PubMed ID: 33706507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides.
    Saveleva VA; Wang L; Teschner D; Jones T; Gago AS; Friedrich KA; Zafeiratos S; Schlögl R; Savinova ER
    J Phys Chem Lett; 2018 Jun; 9(11):3154-3160. PubMed ID: 29775319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple Method for Synthesizing Highly Active Amorphous Iridium Oxide for Oxygen Evolution under Acidic Conditions.
    Salimi P; Najafpour MM
    Chemistry; 2020 Dec; 26(71):17063-17068. PubMed ID: 32852097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts.
    Massué C; Pfeifer V; Huang X; Noack J; Tarasov A; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1943-1957. PubMed ID: 28164475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of the high electrochemical activity of pseudo-amorphous iridium oxides.
    Elmaalouf M; Odziomek M; Duran S; Gayrard M; Bahri M; Tard C; Zitolo A; Lassalle-Kaiser B; Piquemal JY; Ersen O; Boissière C; Sanchez C; Giraud M; Faustini M; Peron J
    Nat Commun; 2021 Jun; 12(1):3935. PubMed ID: 34168129
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Li N; Cai L; Gao G; Lin Y; Wang C; Liu H; Liu Y; Duan H; Ji Q; Hu W; Tan H; Qi Z; Wang LW; Yan W
    Nano Lett; 2022 Sep; 22(17):6988-6996. PubMed ID: 36005477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly active nano-sized iridium catalysts: synthesis and
    Lettenmeier P; Majchel J; Wang L; Saveleva VA; Zafeiratos S; Savinova ER; Gallet JJ; Bournel F; Gago AS; Friedrich KA
    Chem Sci; 2018 Apr; 9(14):3570-3579. PubMed ID: 29780489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.