These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36321213)

  • 1. Valence-variable Catalysts for Redox-controlled Switchable Ring-opening Polymerization.
    Li B; Hu C; Pang X; Chen X
    Chem Asian J; 2023 Jan; 18(1):e202201031. PubMed ID: 36321213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-Switchable Ring-Opening Polymerization with Ferrocene Derivatives.
    Wei J; Diaconescu PL
    Acc Chem Res; 2019 Feb; 52(2):415-424. PubMed ID: 30707548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation.
    Osten KM; Mehrkhodavandi P
    Acc Chem Res; 2017 Nov; 50(11):2861-2869. PubMed ID: 29087695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides.
    Diment WT; Lindeboom W; Fiorentini F; Deacy AC; Williams CK
    Acc Chem Res; 2022 Aug; 55(15):1997-2010. PubMed ID: 35863044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimetallic Manganese Catalysts: A Route to Controlled and Switchable Polymerization of Lactones.
    Li B; Hu C; Yang Z; Pang X; Chen X
    Chemistry; 2024 Jan; 30(2):e202302884. PubMed ID: 37814820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond stereoselectivity, switchable catalysis: some of the last frontier challenges in ring-opening polymerization of cyclic esters.
    Guillaume SM; Kirillov E; Sarazin Y; Carpentier JF
    Chemistry; 2015 May; 21(22):7988-8003. PubMed ID: 25832549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ring-opening polymerization of cyclic esters by cyclodextrins.
    Harada A; Osaki M; Takashima Y; Yamaguchi H
    Acc Chem Res; 2008 Sep; 41(9):1143-52. PubMed ID: 18690725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling polymer stereochemistry in ring-opening polymerization: a decade of advances shaping the future of biodegradable polyesters.
    Tschan MJ; Gauvin RM; Thomas CM
    Chem Soc Rev; 2021 Dec; 50(24):13587-13608. PubMed ID: 34786575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemically Controlled Switchable Copolymerization of Lactide, Carbon Dioxide, and Epoxides.
    Huang Y; Hu C; Pang X; Zhou Y; Duan R; Sun Z; Chen X
    Angew Chem Int Ed Engl; 2022 May; 61(20):e202202660. PubMed ID: 35254726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-Reversible Construction of Oxygen-Rich Block Copolymers from Epoxide Mixtures by Organoboron Catalysts.
    Zhang YY; Yang GW; Xie R; Zhu XF; Wu GP
    J Am Chem Soc; 2022 Nov; 144(43):19896-19909. PubMed ID: 36256447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dormant Polymers and Their Role in Living and Controlled Polymerizations; Influence on Polymer Chemistry, Particularly on the Ring Opening Polymerization.
    Penczek S; Pretula J; Lewiński P
    Polymers (Basel); 2017 Nov; 9(12):. PubMed ID: 30965944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of a zirconium compound for redox switchable ring opening polymerization.
    Dai R; Diaconescu PL
    Dalton Trans; 2019 Feb; 48(9):2996-3002. PubMed ID: 30747193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring Opening Polymerization of Six- and Eight-Membered Racemic Cyclic Esters for Biodegradable Materials.
    Grillo A; Rusconi Y; D'Alterio MC; De Rosa C; Talarico G; Poater A
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination Ring-Opening Polymerization of Cyclic Esters: A Critical Overview of DFT Modeling and Visualization of the Reaction Mechanisms.
    Nifant'ev I; Ivchenko P
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in the Titanium-Based Catalysts for Ring-Opening Polymerization.
    Wang W
    ACS Omega; 2024 Jul; 9(28):29983-29993. PubMed ID: 39035956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of substitutionally inert phenolate ligands to lanthanide(II) and (III) compounds--catalysts for ring-opening polymerization of cyclic esters.
    Binda PI; Delbridge EE; Abrahamson HB; Skelton BW
    Dalton Trans; 2009 Apr; (15):2777-87. PubMed ID: 19333501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zr(IV) Catalyst for the Ring-Opening Copolymerization of Anhydrides (A) with Epoxides (B), Oxetane (B), and Tetrahydrofurans (C) to Make ABB- and/or ABC-Poly(ester-
    Kerr RWF; Williams CK
    J Am Chem Soc; 2022 Apr; 144(15):6882-6893. PubMed ID: 35388696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated Monomer Mechanism (AMM) in Cationic Ring-Opening Polymerization. The Origin of the AMM and Further Development in Polymerization of Cyclic Esters.
    Penczek S; Pretula J
    ACS Macro Lett; 2021 Nov; 10(11):1377-1397. PubMed ID: 35549023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst Engineering Empowers the Creation of Biomass-Derived Polyesters and Polycarbonates.
    Brandolese A; Kleij AW
    Acc Chem Res; 2022 Jun; 55(12):1634-1645. PubMed ID: 35648973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainability and Polyesters: Beyond Metals and Monomers to Function and Fate.
    De Hoe GX; Şucu T; Shaver MP
    Acc Chem Res; 2022 Jun; 55(11):1514-1523. PubMed ID: 35579567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.