These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36321213)

  • 21. Phosphazene Bases as Organocatalysts for Ring-Opening Polymerization of Cyclic Esters.
    Liu S; Ren C; Zhao N; Shen Y; Li Z
    Macromol Rapid Commun; 2018 Dec; 39(24):e1800485. PubMed ID: 30276913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Ring-Opening Metathesis Polymerization Catalyst That Exhibits Redox-Switchable Monomer Selectivities.
    Lastovickova DN; Shao H; Lu G; Liu P; Bielawski CW
    Chemistry; 2017 May; 23(25):5994-6000. PubMed ID: 27977049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of ligand redox non-innocence in ring-opening polymerization reactions catalysed by bis(imino)pyridine iron alkoxide complexes.
    Delle Chiaie KR; Biernesser AB; Ortuño MA; Dereli B; Iovan DA; Wilding MJT; Li B; Cramer CJ; Byers JA
    Dalton Trans; 2017 Oct; 46(38):12971-12980. PubMed ID: 28932853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent developments in enzyme-catalyzed ring-opening polymerization.
    Albertsson AC; Srivastava RK
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1077-93. PubMed ID: 18406003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cobalt-Mediated Switchable Catalysis for the One-Pot Synthesis of Cyclic Polymers.
    Zhao Y; Zhu S; Liao C; Wang Y; Lam JWY; Zhou X; Wang X; Xie X; Tang BZ
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):16974-16979. PubMed ID: 34013603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterotrimetallic Carbon Dioxide Copolymerization and Switchable Catalysts: Sodium is the Key to High Activity and Unusual Selectivity.
    Plajer AJ; Williams CK
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13372-13379. PubMed ID: 33971064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst.
    Biernesser AB; Delle Chiaie KR; Curley JB; Byers JA
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5251-4. PubMed ID: 26991820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring Oxidation State-Dependent Selectivity in Polymerization of Cyclic Esters and Carbonates with Zinc(II) Complexes.
    Abubekerov M; Vlček V; Wei J; Miehlich ME; Quan SM; Meyer K; Neuhauser D; Diaconescu PL
    iScience; 2018 Sep; 7():120-131. PubMed ID: 30267674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkali and Alkaline Earth Metal Complexes as Versatile Catalysts for Ring-Opening Polymerization of Cyclic Esters.
    Bhattacharjee J; Sarkar A; Panda TK
    Chem Rec; 2021 Aug; 21(8):1898-1911. PubMed ID: 34197009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Switchable Polymerization: A Practicable Strategy to Produce Biodegradable Block Copolymers with Diverse Properties.
    Jia Y; Sun Z; Hu C; Pang X
    Chempluschem; 2022 Sep; 87(9):e202200220. PubMed ID: 36071346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Easy access to oxygenated block polymers via switchable catalysis.
    Stößer T; Sulley GS; Gregory GL; Williams CK
    Nat Commun; 2019 Jun; 10(1):2668. PubMed ID: 31209211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Switchable DNA Photocatalysts for Radical Polymerization Controlled by Chemical Stimuli.
    Cox CA; Ogorek AN; Habumugisha JP; Martell JD
    J Am Chem Soc; 2023 Jan; 145(3):1818-1825. PubMed ID: 36629375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures.
    Wang X; Huo Z; Xie X; Shanaiah N; Tong R
    Chem Asian J; 2023 Feb; 18(4):e202201147. PubMed ID: 36571563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Diethylzinc/Gallic Acid and Diethylzinc/Gallic Acid Ester Catalytic Systems for the Ring-Opening Polymerization of rac-Lactide.
    Żółtowska K; Piotrowska U; Oledzka E; Sobczak M
    Molecules; 2015 Dec; 20(12):21909-23. PubMed ID: 26670224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in externally controlled ring-opening polymerisations.
    Kaler S; Jones MD
    Dalton Trans; 2022 Jan; 51(4):1241-1256. PubMed ID: 34918735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic polythioesters via ring-opening polymerization of 1,4-thiazine-2,5-diones.
    Ura Y; Al-Sayah M; Montenegro J; Beierle JM; Leman LJ; Ghadiri MR
    Org Biomol Chem; 2009 Jul; 7(14):2878-84. PubMed ID: 19582297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemoselective Polymerizations from Mixtures of Epoxide, Lactone, Anhydride, and Carbon Dioxide.
    Romain C; Zhu Y; Dingwall P; Paul S; Rzepa HS; Buchard A; Williams CK
    J Am Chem Soc; 2016 Mar; 138(12):4120-31. PubMed ID: 27003333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipase-catalyzed ring-opening polymerization of natural compound-based cyclic monomers.
    Wang K; Li C; Man L; Zhang M; Jia YG; Zhu XX
    Chem Commun (Camb); 2023 Jul; 59(60):9182-9194. PubMed ID: 37431654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen-Triggered Switchable Polymerization for the One-Pot Synthesis of CO
    Zhao Y; Wang Y; Zhou X; Xue Z; Wang X; Xie X; Poli R
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14311-14318. PubMed ID: 31282122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlating Metal Redox Potentials to Co(III)K(I) Catalyst Performances in Carbon Dioxide and Propene Oxide Ring Opening Copolymerization.
    Lindeboom W; Deacy AC; Phanopoulos A; Buchard A; Williams CK
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202308378. PubMed ID: 37409487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.