These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36321218)

  • 1. Predicting DNA-binding protein and coronavirus protein flexibility using protein dihedral angle and sequence feature.
    Wang W; Su X; Liu D; Zhang H; Wang X; Zhou Y
    Proteins; 2023 Apr; 91(4):497-507. PubMed ID: 36321218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks.
    Helles G; Fonseca R
    BMC Bioinformatics; 2009 Oct; 10():338. PubMed ID: 19835576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.
    Ponnuraj K; Saravanan KM
    Int J Biol Macromol; 2017 Apr; 97():434-439. PubMed ID: 28099891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognizing Ion Ligand-Binding Residues by Random Forest Algorithm Based on Optimized Dihedral Angle.
    Liu L; Hu X; Feng Z; Wang S; Sun K; Xu S
    Front Bioeng Biotechnol; 2020; 8():493. PubMed ID: 32596216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backbone Dihedral Angle Prediction.
    Zimmermann O
    Methods Mol Biol; 2017; 1484():65-82. PubMed ID: 27787821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding.
    Gunasekaran K; Nussinov R
    J Mol Biol; 2007 Jan; 365(1):257-73. PubMed ID: 17059826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information.
    Ma X; Guo J; Liu HD; Xie JM; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the side-chain dihedral angle distributions of nonpolar, aromatic, and polar amino acids using hard sphere models.
    Zhou AQ; O'Hern CS; Regan L
    Proteins; 2014 Oct; 82(10):2574-84. PubMed ID: 24912976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs.
    Chen K; Kurgan LA; Ruan J
    BMC Struct Biol; 2007 Apr; 7():25. PubMed ID: 17437643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local propensities and statistical potentials of backbone dihedral angles in proteins.
    Betancourt MR; Skolnick J
    J Mol Biol; 2004 Sep; 342(2):635-49. PubMed ID: 15327961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated prediction of one-dimensional structural features and their relationships with conformational flexibility in helical membrane proteins.
    Ahmad S; Singh YH; Paudel Y; Mori T; Sugita Y; Mizuguchi K
    BMC Bioinformatics; 2010 Oct; 11():533. PubMed ID: 20977780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties.
    Huang HL; Lin IC; Liou YF; Tsai CT; Hsu KT; Huang WL; Ho SJ; Ho SY
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S47. PubMed ID: 21342579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences.
    Song J; Tan H; Wang M; Webb GI; Akutsu T
    PLoS One; 2012; 7(2):e30361. PubMed ID: 22319565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machines for prediction of dihedral angle regions.
    Zimmermann O; Hansmann UH
    Bioinformatics; 2006 Dec; 22(24):3009-15. PubMed ID: 17005536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Side-chain flexibility in proteins upon ligand binding.
    Najmanovich R; Kuttner J; Sobolev V; Edelman M
    Proteins; 2000 May; 39(3):261-8. PubMed ID: 10737948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural networks for dihedral angles prediction in enzyme loops: a novel approach.
    Al-Gharabli SI; Al-Agtash S; Rawashdeh NA; Barqawi KR
    Int J Bioinform Res Appl; 2015; 11(2):153-61. PubMed ID: 25786794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RaptorX-Angle: real-value prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning.
    Gao Y; Wang S; Deng M; Xu J
    BMC Bioinformatics; 2018 May; 19(Suppl 4):100. PubMed ID: 29745828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate sequence-based prediction of catalytic residues.
    Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L
    Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear response theory in dihedral angle space for protein structural change upon ligand binding.
    Omori S; Fuchigami S; Ikeguchi M; Kidera A
    J Comput Chem; 2009 Dec; 30(16):2602-8. PubMed ID: 19373827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.