BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36321296)

  • 1. SERS Monitored Kinetic Process of Gaseous Thiophenol Compound in Plasmonic MOF Nanoparticles.
    Xie X; Gao N; Huang Y; Fang Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51468-51475. PubMed ID: 36321296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Driven Interfacial Catalytic Reactions in Plasmonic MOF Nanoparticles.
    Xie X; Zhang Y; Zhang L; Zheng J; Huang Y; Fa H
    Anal Chem; 2021 Oct; 93(39):13219-13225. PubMed ID: 34546701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films.
    Li M; He X; Wu C; Wang L; Zhang X; Gong X; Zeng X; Huang Y
    ACS Sens; 2024 Feb; 9(2):979-987. PubMed ID: 38299870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early-stage oral cancer diagnosis by artificial intelligence-based SERS using Ag NWs@ZIF core-shell nanochains.
    Xie X; Yu W; Chen Z; Wang L; Yang J; Liu S; Li L; Li Y; Huang Y
    Nanoscale; 2023 Aug; 15(32):13466-13472. PubMed ID: 37548371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air.
    Lafuente M; De Marchi S; Urbiztondo M; Pastoriza-Santos I; Pérez-Juste I; Santamaría J; Mallada R; Pina M
    ACS Sens; 2021 Jun; 6(6):2241-2251. PubMed ID: 34043325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optoplasmonic MOFs film for SERS detection.
    Zhang X; Xie X; Zhang L; Yao K; Huang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121362. PubMed ID: 35576840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layered filter paper-silver nanoparticle-ZIF-8 composite for efficient multi-mode enrichment and sensitive SERS detection of thiram.
    Xu F; Shang W; Xuan M; Ma G; Ben Z
    Chemosphere; 2022 Feb; 288(Pt 3):132635. PubMed ID: 34687679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility.
    Zheng G; de Marchi S; López-Puente V; Sentosun K; Polavarapu L; Pérez-Juste I; Hill EH; Bals S; Liz-Marzán LM; Pastoriza-Santos I; Pérez-Juste J
    Small; 2016 Aug; 12(29):3935-43. PubMed ID: 27273895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Array-Assisted SERS Microfluidic Chips for Highly Sensitive and Multiplex Gas Sensing.
    Yang K; Zong S; Zhang Y; Qian Z; Liu Y; Zhu K; Li L; Li N; Wang Z; Cui Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1395-1403. PubMed ID: 31820638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-driven catalytic reactions in optoplasmonic sandwich hybrid structure.
    Zhang X; Xie X; Zhang L; Chen Z; Huang Y
    Appl Opt; 2023 Jan; 62(2):506-510. PubMed ID: 36630253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection.
    Liu Y; Chui KK; Fang Y; Wen S; Zhuo X; Wang J
    ACS Nano; 2024 Apr; 18(17):11234-11244. PubMed ID: 38630523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au@ZIF-8 Core-Shell Nanoparticles as a SERS Substrate for Volatile Organic Compound Gas Detection.
    Chen QQ; Hou RN; Zhu YZ; Wang XT; Zhang H; Zhang YJ; Zhang L; Tian ZQ; Li JF
    Anal Chem; 2021 May; 93(19):7188-7195. PubMed ID: 33945260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au@ZIF-8 SERS paper for food spoilage detection.
    Kim H; Trinh BT; Kim KH; Moon J; Kang H; Jo K; Akter R; Jeong J; Lim EK; Jung J; Choi HS; Park HG; Kwon OS; Yoon I; Kang T
    Biosens Bioelectron; 2021 May; 179():113063. PubMed ID: 33578117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the range of metal ions SERS detection using hybrid plasmonic/ZIF-8 particles.
    Pazos-Perez N; Guerrini L
    Talanta; 2024 Jan; 266(Pt 1):124941. PubMed ID: 37478767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Plasmonic Nanoprobes in Electromagnetic Field Enhancement for SERS Detection of Biomarkers.
    Cheng HW; Xue SY; Li J; Gordon JS; Wang S; Filippone NR; Ngo QM; Zhong CJ
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Regulation of Shell Thickness of the Au@MOF Core-Shell Composites for Highly Sensitive Surface-Enhanced Raman Scattering Sensing.
    Li B; Liu Y; Cheng J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of gold nanorods functionalized by zirconium-based metal-organic frameworks for surface enhanced Raman scattering.
    Li J; Liu Z; Tian D; Li B; Shao L; Lou Z
    Nanoscale; 2022 Apr; 14(14):5561-5568. PubMed ID: 35343993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-organic framework engineered corn-like SERS active Ag@Carbon with controllable spacing distance for tracking trace amount of organic compounds.
    Zhang Y; Xue C; Li P; Cui S; Cui D; Jin H
    J Hazard Mater; 2022 Feb; 424(Pt C):127686. PubMed ID: 34775316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery.
    Jiang P; Hu Y; Li G
    Talanta; 2019 Aug; 200():212-217. PubMed ID: 31036175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive Diagnosis of Gastric Cancer Based on Breath Analysis with a Tubular Surface-Enhanced Raman Scattering Sensor.
    Huang L; Zhu Y; Xu C; Cai Y; Yi Y; Li K; Ren X; Jiang D; Ge Y; Liu X; Sun W; Zhang Q; Wang Y
    ACS Sens; 2022 May; 7(5):1439-1450. PubMed ID: 35561250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.