These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3632140)

  • 1. Effects of coenzyme Q10 on recovery of hypoxia-induced changes in ATP and creatine phosphate contents of sinoatrial nodal cells of the rabbit's heart after reoxygenation.
    Yoshikawa Y; Kano T; Higuchi M; Nishi K
    Arch Int Pharmacodyn Ther; 1987 May; 287(1):96-108. PubMed ID: 3632140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible mechanism by which coenzyme Q10 improves reoxygenation-induced recovery of cardiac contractile force after hypoxia.
    Takeo S; Tanonaka K; Tazuma Y; Miyake K; Murai R
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1131-8. PubMed ID: 3694529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protective effect of coenzyme Q10 on isolated rabbit ventricular muscle under hypoxic condition.
    Furuta T; Kodama I; Kondo N; Toyama J; Yamada K
    J Cardiovasc Pharmacol; 1982; 4(6):1062-7. PubMed ID: 6185773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible mechanisms for reoxygenation-induced recovery of myocardial high-energy phosphates after hypoxia.
    Takeo S; Sakanashi M
    J Mol Cell Cardiol; 1983 Sep; 15(9):577-94. PubMed ID: 6631971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischemia reperfusion injury.
    Niibori K; Wroblewski KP; Yokoyama H; Crestanello JA; Whitman GJ
    Biofactors; 1999; 9(2-4):307-13. PubMed ID: 10416045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenine nucleotide metabolites are beneficial for recovery of cardiac contractile force after hypoxia.
    Takeo S; Tanonaka K; Miyake K; Imago M
    J Mol Cell Cardiol; 1988 Mar; 20(3):187-99. PubMed ID: 3398053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of coenzyme Q10 and vitamin E on brain energy metabolism in the animal model of Huntington's disease.
    Kasparová S; Sumbalová Z; Bystrický P; Kucharská J; Liptaj T; Mlynárik V; Gvozdjáková A
    Neurochem Int; 2006 Jan; 48(2):93-9. PubMed ID: 16290265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart.
    Neubauer S; Ingwall JS
    J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of mitochondrial oxygen consumption in isolated cardiomyocytes after hypoxia-reoxygenation.
    Smith DR; Stone D; Darley-Usmar VM
    Free Radic Res; 1996 Mar; 24(3):159-66. PubMed ID: 8728117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coenzyme Q10 enhances cardiac functional and metabolic recovery and reduces Ca2+ overload during postischemic reperfusion.
    Hano O; Thompson-Gorman SL; Zweier JL; Lakatta EG
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2174-81. PubMed ID: 8023979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial effects of yohimbine on posthypoxic recovery of cardiac function and myocardial metabolism in isolated perfused rabbit hearts.
    Takeo S; Hayashi M; Tanonaka K; Yamamoto K
    J Pharmacol Exp Ther; 1991 Jul; 258(1):94-102. PubMed ID: 1677045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotachophoretic evidence for energy-preservating effect of coenzyme Q10 on isolated guinea-pig cardiac muscle.
    Aomine M; Arita M
    Gen Pharmacol; 1984; 15(2):145-8. PubMed ID: 6714641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in electrical activity and ultrastructure of sinoatrial nodal cells of the rabbit's heart exposed to hypoxic solution.
    Nishi K; Yoshikawa Y; Sugahara K; Morioka T
    Circ Res; 1980 Feb; 46(2):201-13. PubMed ID: 7351037
    [No Abstract]   [Full Text] [Related]  

  • 15. Beneficial effects of befunolol on post-hypoxic recovery of cardiac contractility and myocardial metabolism.
    Maruyama Y; Tanonaka K; Niwa T; Takeo S
    Arzneimittelforschung; 1992 Dec; 42(12):1423-9. PubMed ID: 1363193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic and mitochondrial parameters during hypoxia and reoxygenation in working rat hearts.
    Freisleben HJ; Kriege H; Clarke C; Beyersdorf F; Zimmer G
    Arzneimittelforschung; 1991 Jan; 41(1):81-8. PubMed ID: 1710898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardioprotective efficiency of dihydrolipoic acid in working rat hearts during hypoxia and reoxygenation. 31P nuclear magnetic resonance investigations.
    Assadnazari H; Zimmer G; Freisleben HJ; Werk W; Leibfritz D
    Arzneimittelforschung; 1993 Apr; 43(4):425-32. PubMed ID: 8494572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A protective action of coenzyme Q10 on chlorpromazine-induced cell damage in the cultured rat myocardial cells.
    Chiba M
    Jpn Heart J; 1984 Jan; 25(1):127-37. PubMed ID: 6737696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ATP metabolites in induction of incomplete recovery of cardiac contractile force after hypoxia.
    Takeo S; Tanonaka K; Miyake K; Fukumoto T
    Can J Cardiol; 1988 May; 4(4):193-200. PubMed ID: 3395917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between coronary flow and high energy phosphates in the isolated perfused rat heart, with special reference to the effects of anoxia, iodoacetic acid, and 2,4-dinitrophenol.
    Shibano T; Abiko Y
    Methods Find Exp Clin Pharmacol; 1989 Sep; 11(9):567-75. PubMed ID: 2586203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.