BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36321486)

  • 21. Prediction of Arctic plant phenological sensitivity to climate change from historical records.
    Panchen ZA; Gorelick R
    Ecol Evol; 2017 Mar; 7(5):1325-1338. PubMed ID: 28261446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity.
    Iler AM; Inouye DW; Schmidt NM; Høye TT
    Ecology; 2017 Mar; 98(3):647-655. PubMed ID: 27984645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States.
    Park DS; Breckheimer I; Williams AC; Law E; Ellison AM; Davis CC
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of herbarium and citizen science phenology datasets for detecting response of flowering time to climate change in Denmark.
    Iwanycki Ahlstrand N; Primack RB; Tøttrup AP
    Int J Biometeorol; 2022 May; 66(5):849-862. PubMed ID: 35235036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment.
    Wadgymar SM; Ogilvie JE; Inouye DW; Weis AE; Anderson JT
    New Phytol; 2018 Apr; 218(2):517-529. PubMed ID: 29451307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The phenology of Rubus fruticosus in Ireland: herbarium specimens provide evidence for the response of phenophases to temperature, with implications for climate warming.
    Diskin E; Proctor H; Jebb M; Sparks T; Donnelly A
    Int J Biometeorol; 2012 Nov; 56(6):1103-11. PubMed ID: 22382508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A specialist bee and its host plants experience phenological shifts at different rates in response to climate change.
    Weaver SA; Mallinger RE
    Ecology; 2022 May; 103(5):e3658. PubMed ID: 35129842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New directions in tropical phenology.
    Davis CC; Lyra GM; Park DS; Asprino R; Maruyama R; Torquato D; Cook BI; Ellison AM
    Trends Ecol Evol; 2022 Aug; 37(8):683-693. PubMed ID: 35680467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenological responses to climate change based on a hundred years of herbarium collections of tropical Melastomataceae.
    Lima DF; Mello JHF; Lopes IT; Forzza RC; Goldenberg R; Freitas L
    PLoS One; 2021; 16(5):e0251360. PubMed ID: 33961684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Philos Trans R Soc Lond B Biol Sci; 2013 Aug; 368(1624):20120489. PubMed ID: 23836793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CrowdCurio: an online crowdsourcing platform to facilitate climate change studies using herbarium specimens.
    Willis CG; Law E; Williams AC; Franzone BF; Bernardos R; Bruno L; Hopkins C; Schorn C; Weber E; Park DS; Davis CC
    New Phytol; 2017 Jul; 215(1):479-488. PubMed ID: 28394023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plants with lengthened phenophases increase their dominance under warming in an alpine plant community.
    Chen J; Luo Y; Chen Y; Felton AJ; Hopping KA; Wang RW; Niu S; Cheng X; Zhang Y; Cao J; Olesen JE; Andersen MN; Jørgensen U
    Sci Total Environ; 2020 Aug; 728():138891. PubMed ID: 32361364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.
    Munson SM; Sher AA
    Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ecological implications of intra- and inter-species variation in phenological sensitivity.
    Xie Y; Thammavong HT; Park DS
    New Phytol; 2022 Oct; 236(2):760-773. PubMed ID: 35801834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Herbarium specimens show contrasting phenological responses to Himalayan climate.
    Hart R; Salick J; Ranjitkar S; Xu J
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10615-9. PubMed ID: 25002486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different responses of alpine plants to natural climate change reduced coexistence through phenological niche overlap.
    Dong S; Li S; Xu Y; Shen H; Song H; Wu Z; Wu S; Zhou B; Li F
    Sci Total Environ; 2023 Sep; 892():164522. PubMed ID: 37268148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Long-Lived Alpine Perennial Advances Flowering under Warmer Conditions but Not Enough to Maintain Reproductive Success.
    Zettlemoyer MA; Conner RJ; Seaver MM; Waddle E; DeMarche ML
    Am Nat; 2024 May; 203(5):E157-E174. PubMed ID: 38635358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.