BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36321829)

  • 1. Alternative Pathway to Phase Down Coal Power and Achieve Negative Emission in China.
    Wang R; Li H; Cai W; Cui X; Zhang S; Li J; Weng Y; Song X; Cao B; Zhu L; Yu L; Li W; Huang L; Qi B; Ma W; Bian J; Zhang J; Nie Y; Fu J; Zhang J; Wang C
    Environ Sci Technol; 2022 Nov; 56(22):16082-16093. PubMed ID: 36321829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the economy of coal power plants retrofitted with post-combustion and biomass co-firing carbon capture in China.
    Yuan J; Wang Y; Zhang W; Zhang J
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47438-47454. PubMed ID: 36738409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of carbon markets and subsidies on carbon capture and storage retrofitting of existing coal-fired units in China.
    Li K; Yang J; Wei Y
    J Environ Manage; 2023 Jan; 326(Pt B):116824. PubMed ID: 36442336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving Zero/Negative-Emissions Coal-Fired Power Plants Using Amine-Based Postcombustion CO
    Jiang K; Feron P; Cousins A; Zhai R; Li K
    Environ Sci Technol; 2020 Feb; 54(4):2429-2438. PubMed ID: 31990528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant co-benefits of air pollutant and CO
    Cai Q; Qiu X; Peng L; Li Q; Zhang Y
    Sci Total Environ; 2023 Aug; 887():164116. PubMed ID: 37172840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving sustainable emissions in China: Techno-economic analysis of post-combustion carbon capture unit retrofitted to WTE plants.
    Boré A; Dziva G; Chu C; Huang Z; Liu X; Qin S; Ma W
    J Environ Manage; 2024 Jan; 349():119280. PubMed ID: 37897897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerate Large-Scale Biomass Residue Utilization via Cofiring to Help China Achieve Its 2030 Carbon-Peaking Goals.
    Yun H; Dai J; Tan T; Bi X
    Environ Sci Technol; 2023 Jun; 57(25):9163-9173. PubMed ID: 37307511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of potential, cost, and environmental benefits of CCS-EWR technology for coal-fired power plants in Yellow River Basin of China.
    Xu M; Zhang X; Shen S; Wei S; Fan JL
    J Environ Manage; 2021 Aug; 292():112717. PubMed ID: 34015611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-carbon trade-off in China's coal power industry.
    Zhang C; Anadon LD; Mo H; Zhao Z; Liu Z
    Environ Sci Technol; 2014 Oct; 48(19):11082-9. PubMed ID: 25215622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viability of Carbon Capture and Sequestration Retrofits for Existing Coal-Fired Power Plants under an Emission Trading Scheme.
    Talati S; Zhai H; Morgan MG
    Environ Sci Technol; 2016 Dec; 50(23):12567-12574. PubMed ID: 27792308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Health and Climate Benefits of Economic Dispatch in China's Power System.
    Luo Q; Garcia-Menendez F; Yang H; Deshmukh R; He G; Lin J; Johnson JX
    Environ Sci Technol; 2023 Feb; 57(7):2898-2906. PubMed ID: 36758223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decarbonizing the Coal-Fired Power Sector in China via Carbon Capture, Geological Utilization, and Storage Technology.
    Wei N; Jiao Z; Ellett K; Ku AY; Liu S; Middleton R; Li X
    Environ Sci Technol; 2021 Oct; 55(19):13164-13173. PubMed ID: 34549588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-objective optimization of coal-fired power units considering deep peaking regulation in China.
    Feng S; Zhang X; Zhang H
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10756-10774. PubMed ID: 36076139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Employment impact assessment of carbon capture and storage (CCS) in China's power sector based on input-output model.
    Jiang Y; Lei Y; Yan X; Yang Y
    Environ Sci Pollut Res Int; 2019 May; 26(15):15665-15676. PubMed ID: 30949943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.
    Zhai H; Ou Y; Rubin ES
    Environ Sci Technol; 2015 Jul; 49(13):7571-9. PubMed ID: 26023722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Case study on incentive mechanism of energy efficiency retrofit in coal-fueled power plant in China.
    Yuan D; Guo X; Cao Y; He L; Wang J; Xi B; Li J; Ma W; Zhang M
    ScientificWorldJournal; 2012; 2012():841636. PubMed ID: 23365532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coal and biomass to fuels and power.
    Williams RH; Liu G; Kreutz TG; Larson ED
    Annu Rev Chem Biomol Eng; 2011; 2():529-53. PubMed ID: 22432630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of technical inefficiency in China's coal-fired power plants and policy recommendations for CO
    Nakaishi T; Kagawa S; Takayabu H; Lin C
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):52064-52081. PubMed ID: 34002311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology.
    Bhui B; Vairakannu P
    J Environ Manage; 2019 Feb; 231():1241-1256. PubMed ID: 30602249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating palm oil biomass waste utilization in coal-fired power plants for meeting near-term emission targets.
    Mohd Idris MN; Hashim H
    J Environ Manage; 2021 Oct; 296():113118. PubMed ID: 34216903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.