These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36321942)

  • 1. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution.
    Jakob DS; Centrone A
    Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study.
    Ahn T; Jueckstock M; Mandair GS; Henderson J; Sinder BP; Kozloff KM; Banaszak Holl MM
    J Struct Biol; 2022 Sep; 214(3):107878. PubMed ID: 35781024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy.
    Schwartz JJ; Pavlidis G; Centrone A
    Anal Chem; 2022 Sep; 94(38):13126-13135. PubMed ID: 36099442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Force Microscopy Combined with Infrared Spectroscopy as a Tool to Probe Single Bacterium Chemistry.
    Kochan K; Peleg AY; Heraud P; Wood BR
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 33016949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging.
    Quaroni L
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR.
    Schwartz JJ; Jakob DS; Centrone A
    Chem Soc Rev; 2022 Jul; 51(13):5248-5267. PubMed ID: 35616225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically characterizing the cortical cell nano-structure of human hair using atomic force microscopy integrated with infrared spectroscopy (AFM-IR).
    Fellows AP; Casford MTL; Davies PB
    Int J Cosmet Sci; 2022 Feb; 44(1):42-55. PubMed ID: 34820858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging.
    Kennedy E; Al-Majmaie R; Al-Rubeai M; Zerulla D; Rice JH
    J Biophotonics; 2015 Jan; 8(1-2):133-41. PubMed ID: 24307406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Chemical Analysis at the Nanoscale Using the Photothermal Induced Resonance Technique.
    Ramer G; Aksyuk VA; Centrone A
    Anal Chem; 2017 Dec; 89(24):13524-13531. PubMed ID: 29165992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined in situ atomic force microscopy-infrared-attenuated total reflection spectroscopy.
    Brucherseifer M; Kranz C; Mizaikoff B
    Anal Chem; 2007 Nov; 79(22):8803-6. PubMed ID: 17939644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared microspectroscopy combined with conventional atomic force microscopy.
    Kwon B; Schulmerich MV; Elgass LJ; Kong R; Holton SE; Bhargava R; King WP
    Ultramicroscopy; 2012 May; 116():56-61. PubMed ID: 22537743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals.
    Harrison AJ; Bilgili EA; Beaudoin SP; Taylor LS
    Anal Chem; 2013 Dec; 85(23):11449-55. PubMed ID: 24171582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution.
    Katzenmeyer AM; Holland G; Kjoller K; Centrone A
    Anal Chem; 2015 Mar; 87(6):3154-9. PubMed ID: 25707296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope.
    Wang H; Xie Q; Xu XG
    Adv Drug Deliv Rev; 2022 Jan; 180():114080. PubMed ID: 34906646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding AFM-IR Signal Dependence on Sample Thickness and Laser Excitation: Experimental and Theoretical Insights.
    Jakob DS; Schwartz JJ; Pavlidis G; Grutter KE; Centrone A
    Anal Chem; 2024 Oct; 96(41):16195-16202. PubMed ID: 39365177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source.
    Marcott C; Lo M; Kjoller K; Domanov Y; Balooch G; Luengo GS
    Exp Dermatol; 2013 Jun; 22(6):419-21. PubMed ID: 23651342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Submicrometer infrared surface imaging using a scanning-probe microscope and an optical parametric oscillator laser.
    Hill GA; Rice JH; Meech SR; Craig DQ; Kuo P; Vodopyanov K; Reading M
    Opt Lett; 2009 Feb; 34(4):431-3. PubMed ID: 19373331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap-Plasmon-Enhanced High-Spatial-Resolution Imaging by Photothermal-Induced Resonance in the Visible Range.
    Zhou J; Smirnov A; Dietler G; Sekatskii SK
    Nano Lett; 2019 Nov; 19(11):8278-8286. PubMed ID: 31650844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.