BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36322142)

  • 1. 1,4-Dideoxy-1,4-imino-D- and L-lyxitol-based inhibitors bind to Golgi α-mannosidase II in different protonation forms.
    Kóňa J; Šesták S; Wilson IBH; Poláková M
    Org Biomol Chem; 2022 Nov; 20(45):8932-8943. PubMed ID: 36322142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered
    Kalník M; Šesták S; Kóňa J; Bella M; Poláková M
    Beilstein J Org Chem; 2023; 19():282-293. PubMed ID: 36925565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of N-benzyl substituted 1,4-imino-l-lyxitols with a basic functional group as selective inhibitors of Golgi α-mannosidase IIb.
    Klunda T; Šesták S; Kóňa J; Poláková M
    Bioorg Chem; 2019 Mar; 83():424-431. PubMed ID: 30428432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 1,4-imino-L-lyxitols modified at C-5 and their evaluation as inhibitors of GH38 α-mannosidases.
    Bella M; Šesták S; Moncoľ J; Koóš M; Poláková M
    Beilstein J Org Chem; 2018; 14():2156-2162. PubMed ID: 30202468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Benzyl Substitution of Polyhydroxypyrrolidines: The Way to Selective Inhibitors of Golgi α-Mannosidase II.
    Šesták S; Bella M; Klunda T; Gurská S; Džubák P; Wöls F; Wilson IBH; Sladek V; Hajdúch M; Poláková M; Kóňa J
    ChemMedChem; 2018 Feb; 13(4):373-383. PubMed ID: 29323461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Golgi α-mannosidase: opposing structures of
    Drogalin A; Monteiro LS; Alves MJ; Castro TG
    J Biomol Struct Dyn; 2024 Mar; 42(5):2714-2725. PubMed ID: 37158092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Click chemistry' synthesis of 1-(α-D-mannopyranosyl)-1,2,3-triazoles for inhibition of α-mannosidases.
    Poláková M; Stanton R; Wilson IB; Holková I; Šesták S; Machová E; Jandová Z; Kóňa J
    Carbohydr Res; 2015 Apr; 406():34-40. PubMed ID: 25658064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using DFT methodology for more reliable predictive models: Design of inhibitors of Golgi α-Mannosidase II.
    Bobovská A; Tvaroška I; Kóňa J
    J Mol Graph Model; 2016 May; 66():47-57. PubMed ID: 27035259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human lysosomal alpha-mannosidases exhibit different inhibition and metal binding properties.
    Venkatesan M; Kuntz DA; Rose DR
    Protein Sci; 2009 Nov; 18(11):2242-51. PubMed ID: 19722277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico analysis of interaction pattern switching in ligandreceptor binding in Golgi α-mannosidase II induced by the protonated states of inhibitors.
    Sladek V; Kóňa J; Tokiwa H
    Phys Chem Chem Phys; 2017 May; 19(19):12527-12537. PubMed ID: 28470253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site.
    Shah N; Kuntz DA; Rose DR
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9570-5. PubMed ID: 18599462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of modified D-mannose core derivatives and their impact on GH38 α-mannosidases.
    Poláková M; Horák R; Šesták S; Holková I
    Carbohydr Res; 2016 Jun; 428():62-71. PubMed ID: 27152630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of kifunensine and 1-deoxymannojirimycin binding to class I and II alpha-mannosidases demonstrates different saccharide distortions in inverting and retaining catalytic mechanisms.
    Shah N; Kuntz DA; Rose DR
    Biochemistry; 2003 Dec; 42(47):13812-6. PubMed ID: 14636047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen.
    Kuntz DA; Tarling CA; Withers SG; Rose DR
    Biochemistry; 2008 Sep; 47(38):10058-68. PubMed ID: 18759458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II.
    Wen X; Yuan Y; Kuntz DA; Rose DR; Pinto BM
    Biochemistry; 2005 May; 44(18):6729-37. PubMed ID: 15865418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of docking programs for predicting binding of Golgi alpha-mannosidase II inhibitors: a comparison with crystallography.
    Englebienne P; Fiaux H; Kuntz DA; Corbeil CR; Gerber-Lemaire S; Rose DR; Moitessier N
    Proteins; 2007 Oct; 69(1):160-76. PubMed ID: 17557336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Insight into the Binding of Multivalent Pyrrolidines to α-Mannosidases.
    Mirabella S; D'Adamio G; Matassini C; Goti A; Delgado S; Gimeno A; Robina I; Moreno-Vargas AJ; Šesták S; Jiménez-Barbero J; Cardona F
    Chemistry; 2017 Oct; 23(58):14585-14596. PubMed ID: 28902965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A long-wavelength fluorescent substrate for continuous fluorometric determination of alpha-mannosidase activity: resorufin alpha-D-mannopyranoside.
    Coleman DJ; Kuntz DA; Venkatesan M; Cook GM; Williamson SP; Rose DR; Naleway JJ
    Anal Biochem; 2010 Apr; 399(1):7-12. PubMed ID: 20026005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural investigation of the binding of 5-substituted swainsonine analogues to Golgi alpha-mannosidase II.
    Kuntz DA; Nakayama S; Shea K; Hori H; Uto Y; Nagasawa H; Rose DR
    Chembiochem; 2010 Mar; 11(5):673-80. PubMed ID: 20209559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant.
    Zhong W; Kuntz DA; Ember B; Singh H; Moremen KW; Rose DR; Boons GJ
    J Am Chem Soc; 2008 Jul; 130(28):8975-83. PubMed ID: 18558690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.