These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36322654)

  • 1. Free-access optomechanical liquid probes using a twin-microbottle resonator.
    Asano M; Yamaguchi H; Okamoto H
    Sci Adv; 2022 Nov; 8(44):eabq2502. PubMed ID: 36322654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated optical-readout of a high-Q mechanical out-of-plane mode.
    Guo J; Gröblacher S
    Light Sci Appl; 2022 Sep; 11(1):282. PubMed ID: 36171197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals.
    Li H; Chen Y; Noh J; Tadesse S; Li M
    Nat Commun; 2012; 3():1091. PubMed ID: 23033067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-induced tunable dual-bottle-shaped optical microresonator.
    Qin H; Yin Y; Ding M
    Opt Lett; 2019 Dec; 44(24):6017-6020. PubMed ID: 32628208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and testing of microfluidic optomechanical oscillators.
    Han K; Kim KH; Kim J; Lee W; Liu J; Fan X; Carmon T; Bahl G
    J Vis Exp; 2014 May; (87):. PubMed ID: 24962013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtogram scale high frequency nano-optomechanical resonators in water.
    Zhang H; Zhao X; Wang Y; Huang Q; Xia J
    Opt Express; 2017 Jan; 25(2):821-830. PubMed ID: 28157970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Microbottle Resonators for Sensing.
    Bianucci P
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable sub-kHz single-mode fiber laser based on a hybrid microbottle resonator.
    Ma R; Yuan S; Zhu S; Shi L; Zhang X
    Opt Lett; 2018 Nov; 43(21):5315-5318. PubMed ID: 30382995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency nano-optomechanical disk resonators in liquids.
    Gil-Santos E; Baker C; Nguyen DT; Hease W; Gomez C; Lemaître A; Ducci S; Leo G; Favero I
    Nat Nanotechnol; 2015 Sep; 10(9):810-6. PubMed ID: 26237347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Sensing with Multiplexed Optomechanical Resonators.
    Lamberti FR; Palanchoke U; Geurts TPJ; Gely M; Regord S; Banniard L; Sansa M; Favero I; Jourdan G; Hentz S
    Nano Lett; 2022 Mar; 22(5):1866-1873. PubMed ID: 35170318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial Optomechanical Refrigeration via Multimode Cold-Damping Feedback.
    Sommer C; Genes C
    Phys Rev Lett; 2019 Nov; 123(20):203605. PubMed ID: 31809091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.
    Okamoto H; Watanabe T; Ohta R; Onomitsu K; Gotoh H; Sogawa T; Yamaguchi H
    Nat Commun; 2015 Oct; 6():8478. PubMed ID: 26477487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-Optomechanical Resonators in Microfluidics.
    Fong KY; Poot M; Tang HX
    Nano Lett; 2015 Sep; 15(9):6116-20. PubMed ID: 26226184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive Charge Sensor Based on Atom-Assisted High-Order Sideband Generation in a Hybrid Optomechanical System.
    Liu ZX; Xiong H
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent Optical Transduction of Suspended Microcapillary Resonators for Multi-Parameter Sensing Applications.
    Martín-Pérez A; Ramos D; Tamayo J; Calleja M
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slot-Mode Optomechanical Crystals: A Versatile Platform for Multimode Optomechanics.
    Grutter KE; Davanço MI; Srinivasan K
    Optica; 2015; 2(11):994-1001. PubMed ID: 26807432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat.
    Rivière R; Arcizet O; Schliesser A; Kippenberg TJ
    Rev Sci Instrum; 2013 Apr; 84(4):043108. PubMed ID: 23635182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optomechanics with a hybrid carbon nanotube resonator.
    Tavernarakis A; Stavrinadis A; Nowak A; Tsioutsios I; Bachtold A; Verlot P
    Nat Commun; 2018 Feb; 9(1):662. PubMed ID: 29445160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.