BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36322688)

  • 1. Sequence-Specific Structural Features and Solvation Properties of Transcription Factor Binding DNA Motifs: Insights from Molecular Dynamics Simulation.
    Patra P; Gao YQ
    J Phys Chem B; 2022 Nov; 126(45):9187-9206. PubMed ID: 36322688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and dynamical aspect of DNA motif sequence specific binding of AP-1 transcription factor.
    Patra P; Gao YQ
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38506297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.
    Yang L; Zhou T; Dror I; Mathelier A; Wasserman WW; Gordân R; Rohs R
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D148-55. PubMed ID: 24214955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA structural properties of DNA binding sites for 21 transcription factors in the mycobacterial genome.
    Dey U; Olymon K; Banik A; Abbas E; Yella VR; Kumar A
    Front Cell Infect Microbiol; 2023; 13():1147544. PubMed ID: 37396305
    [No Abstract]   [Full Text] [Related]  

  • 10. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.
    Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z
    Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural properties and influence of solvent on the stability of telomeric four-stranded i-motif DNA.
    Mondal M; Bhattacharyya D; Gao YQ
    Phys Chem Chem Phys; 2019 Oct; 21(38):21549-21560. PubMed ID: 31536074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic identification of non-canonical transcription factor motifs.
    Chumpitaz-Diaz L; Samee MAH; Pollard KS
    BMC Mol Cell Biol; 2021 Aug; 22(1):44. PubMed ID: 34465294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea.
    Konda AK; Farmer R; Soren KR; P S S; Setti A
    J Biomol Struct Dyn; 2018 Jul; 36(9):2279-2291. PubMed ID: 28679078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of TF target sites based on atomistic models of protein-DNA complexes.
    Angarica VE; Pérez AG; Vasconcelos AT; Collado-Vides J; Contreras-Moreira B
    BMC Bioinformatics; 2008 Oct; 9():436. PubMed ID: 18922190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexibility of flanking DNA is a key determinant of transcription factor affinity for the core motif.
    Ghoshdastidar D; Bansal M
    Biophys J; 2022 Oct; 121(20):3987-4000. PubMed ID: 35978548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.
    Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q
    Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibility and structure of flanking DNA impact transcription factor affinity for its core motif.
    Yella VR; Bhimsaria D; Ghoshdastidar D; Rodríguez-Martínez JA; Ansari AZ; Bansal M
    Nucleic Acids Res; 2018 Dec; 46(22):11883-11897. PubMed ID: 30395339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An equilibrium partitioning model connecting gene expression and cis-motif content.
    Mellor J; DeLisi C
    Bioinformatics; 2006 Jul; 22(14):e368-74. PubMed ID: 16873495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.