BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 36322775)

  • 1. Direct Aroylation of Olefins through a Cobalt/Photoredox-Catalyzed Decarboxylative and Dehydrogenative Coupling with α-Oxo Acids.
    Davies AM; D Hernandez R; Tunge JA
    Chemistry; 2022 Dec; 28(72):e202202781. PubMed ID: 36322775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Aroylation of Olefins through a Cobalt/Photoredox-Catalyzed Decarboxylative and Dehydrogenative Coupling with α-Oxo Acids.
    Davies AM; Hernandez RD; Tunge JA
    Chemistry; 2022 Dec; 28(72):e202203641. PubMed ID: 36480768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoredox/Cobalt Dual-Catalyzed Decarboxylative Elimination of Carboxylic Acids: Development and Mechanistic Insight.
    Cartwright KC; Joseph E; Comadoll CG; Tunge JA
    Chemistry; 2020 Sep; 26(54):12454-12471. PubMed ID: 32449820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric C-H Dehydrogenative Allylic Alkylation by Ternary Photoredox-Cobalt-Chiral Primary Amine Catalysis under Visible Light.
    Jia Z; Zhang L; Luo S
    J Am Chem Soc; 2022 Jun; 144(24):10705-10710. PubMed ID: 35674475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of factors controlling Pd-catalyzed decarboxylative coupling of carboxylic acids with olefins.
    Zhang SL; Fu Y; Shang R; Guo QX; Liu L
    J Am Chem Soc; 2010 Jan; 132(2):638-46. PubMed ID: 20038103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids.
    Chu L; Lipshultz JM; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7929-33. PubMed ID: 26014029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Decarboxylative-Decarbonylative Alkylation of α-Oxo Acids with Electrophilic Olefins via Visible-Light Photoredox Catalysis.
    Chen JQ; Chang R; Wei YL; Mo JN; Wang ZY; Xu PF
    J Org Chem; 2018 Jan; 83(1):253-259. PubMed ID: 29205044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective photoredox decarboxylation of α-ketoacids to allylic ketones and 1,4-dicarbonyl compounds dependent on cobaloxime catalysis.
    Zhang H; Xiao Q; Qi XK; Gao XW; Tong QX; Zhong JJ
    Chem Commun (Camb); 2020 Oct; 56(83):12530-12533. PubMed ID: 32966408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt-Catalyzed Radical Hydroamination of Alkenes with N-Fluorobenzenesulfonimides.
    Qin T; Lv G; Meng Q; Zhang G; Xiong T; Zhang Q
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25949-25957. PubMed ID: 34562047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins.
    Millet A; Lefebvre Q; Rueping M
    Chemistry; 2016 Sep; 22(38):13464-8. PubMed ID: 27321136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Triple Photoredox/Cobalt/Brønsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes.
    Nakagawa M; Matsuki Y; Nagao K; Ohmiya H
    J Am Chem Soc; 2022 May; 144(18):7953-7959. PubMed ID: 35476545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic dehydrogenative decarboxyolefination of carboxylic acids.
    Sun X; Chen J; Ritter T
    Nat Chem; 2018 Dec; 10(12):1229-1233. PubMed ID: 30297751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt/Photoredox Dual-Catalyzed Cross-Radical Coupling of Alkenes via Hydrogen Atom Transfer and Homolytic Substitution.
    Yamaguchi Y; Hirata Y; Higashida K; Yoshino T; Matsunaga S
    Org Lett; 2024 Jun; 26(23):4893-4897. PubMed ID: 38836750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branch-Selective Addition of Unactivated Olefins into Imines and Aldehydes.
    Matos JLM; Vásquez-Céspedes S; Gu J; Oguma T; Shenvi RA
    J Am Chem Soc; 2018 Dec; 140(49):16976-16981. PubMed ID: 30463404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydrogenative Silylation of Alkenes for the Synthesis of Substituted Allylsilanes by Photoredox, Hydrogen-Atom Transfer, and Cobalt Catalysis.
    Yu WL; Luo YC; Yan L; Liu D; Wang ZY; Xu PF
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):10941-10945. PubMed ID: 31166076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palladium-catalyzed dehydrogenative coupling of furans with styrenes.
    Aouf C; Thiery E; Le Bras J; Muzart J
    Org Lett; 2009 Sep; 11(18):4096-9. PubMed ID: 19691352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Photoredox/Cobaloxime Catalysis for Cross-Dehydrogenative α-Heteroarylation of Amines.
    Bergamaschi E; Weike C; Mayerhofer VJ; Funes-Ardoiz I; Teskey CJ
    Org Lett; 2021 Jul; 23(14):5378-5382. PubMed ID: 34196560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular Hydrogen Atom Transfer Hydroarylation of Alkenes toward δ-Lactams Using Cobalt-Photoredox Dual Catalysis.
    Yamaguchi Y; Seino Y; Suzuki A; Kamei Y; Yoshino T; Kojima M; Matsunaga S
    Org Lett; 2022 Apr; 24(12):2441-2445. PubMed ID: 35312335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pd and photoredox dual catalysis assisted decarboxylative
    Rajput S; Kaur R; Jain N
    Org Biomol Chem; 2022 Feb; 20(7):1453-1461. PubMed ID: 35088800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.