These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 36322775)

  • 1. Direct Aroylation of Olefins through a Cobalt/Photoredox-Catalyzed Decarboxylative and Dehydrogenative Coupling with α-Oxo Acids.
    Davies AM; D Hernandez R; Tunge JA
    Chemistry; 2022 Dec; 28(72):e202202781. PubMed ID: 36322775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Aroylation of Olefins through a Cobalt/Photoredox-Catalyzed Decarboxylative and Dehydrogenative Coupling with α-Oxo Acids.
    Davies AM; Hernandez RD; Tunge JA
    Chemistry; 2022 Dec; 28(72):e202203641. PubMed ID: 36480768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoredox/Cobalt Dual-Catalyzed Decarboxylative Elimination of Carboxylic Acids: Development and Mechanistic Insight.
    Cartwright KC; Joseph E; Comadoll CG; Tunge JA
    Chemistry; 2020 Sep; 26(54):12454-12471. PubMed ID: 32449820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition State Analysis of Key Steps in Dual Photoredox-Cobalt-Catalyzed Elimination of Alkyl Bromides.
    Nyagilo VO; Mallojjala SC; Hirschi JS
    ACS Catal; 2024 Apr; 14(7):4683-4689. PubMed ID: 39211423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric C-H Dehydrogenative Allylic Alkylation by Ternary Photoredox-Cobalt-Chiral Primary Amine Catalysis under Visible Light.
    Jia Z; Zhang L; Luo S
    J Am Chem Soc; 2022 Jun; 144(24):10705-10710. PubMed ID: 35674475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of factors controlling Pd-catalyzed decarboxylative coupling of carboxylic acids with olefins.
    Zhang SL; Fu Y; Shang R; Guo QX; Liu L
    J Am Chem Soc; 2010 Jan; 132(2):638-46. PubMed ID: 20038103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids.
    Chu L; Lipshultz JM; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7929-33. PubMed ID: 26014029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Decarboxylative-Decarbonylative Alkylation of α-Oxo Acids with Electrophilic Olefins via Visible-Light Photoredox Catalysis.
    Chen JQ; Chang R; Wei YL; Mo JN; Wang ZY; Xu PF
    J Org Chem; 2018 Jan; 83(1):253-259. PubMed ID: 29205044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective photoredox decarboxylation of α-ketoacids to allylic ketones and 1,4-dicarbonyl compounds dependent on cobaloxime catalysis.
    Zhang H; Xiao Q; Qi XK; Gao XW; Tong QX; Zhong JJ
    Chem Commun (Camb); 2020 Oct; 56(83):12530-12533. PubMed ID: 32966408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt-Catalyzed Radical Hydroamination of Alkenes with N-Fluorobenzenesulfonimides.
    Qin T; Lv G; Meng Q; Zhang G; Xiong T; Zhang Q
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25949-25957. PubMed ID: 34562047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins.
    Millet A; Lefebvre Q; Rueping M
    Chemistry; 2016 Sep; 22(38):13464-8. PubMed ID: 27321136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Triple Photoredox/Cobalt/Brønsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes.
    Nakagawa M; Matsuki Y; Nagao K; Ohmiya H
    J Am Chem Soc; 2022 May; 144(18):7953-7959. PubMed ID: 35476545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic dehydrogenative decarboxyolefination of carboxylic acids.
    Sun X; Chen J; Ritter T
    Nat Chem; 2018 Dec; 10(12):1229-1233. PubMed ID: 30297751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt/Photoredox Dual-Catalyzed Cross-Radical Coupling of Alkenes via Hydrogen Atom Transfer and Homolytic Substitution.
    Yamaguchi Y; Hirata Y; Higashida K; Yoshino T; Matsunaga S
    Org Lett; 2024 Jun; 26(23):4893-4897. PubMed ID: 38836750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branch-Selective Addition of Unactivated Olefins into Imines and Aldehydes.
    Matos JLM; Vásquez-Céspedes S; Gu J; Oguma T; Shenvi RA
    J Am Chem Soc; 2018 Dec; 140(49):16976-16981. PubMed ID: 30463404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dehydrogenative Silylation of Alkenes for the Synthesis of Substituted Allylsilanes by Photoredox, Hydrogen-Atom Transfer, and Cobalt Catalysis.
    Yu WL; Luo YC; Yan L; Liu D; Wang ZY; Xu PF
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):10941-10945. PubMed ID: 31166076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium-catalyzed dehydrogenative coupling of furans with styrenes.
    Aouf C; Thiery E; Le Bras J; Muzart J
    Org Lett; 2009 Sep; 11(18):4096-9. PubMed ID: 19691352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Photoredox/Cobaloxime Catalysis for Cross-Dehydrogenative α-Heteroarylation of Amines.
    Bergamaschi E; Weike C; Mayerhofer VJ; Funes-Ardoiz I; Teskey CJ
    Org Lett; 2021 Jul; 23(14):5378-5382. PubMed ID: 34196560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular Hydrogen Atom Transfer Hydroarylation of Alkenes toward δ-Lactams Using Cobalt-Photoredox Dual Catalysis.
    Yamaguchi Y; Seino Y; Suzuki A; Kamei Y; Yoshino T; Kojima M; Matsunaga S
    Org Lett; 2022 Apr; 24(12):2441-2445. PubMed ID: 35312335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.