These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 36322824)

  • 1. ROS Stress and Cell Membrane Disruption are the Main Antifungal Mechanisms of 2-Phenylethanol against
    Zou X; Wei Y; Jiang S; Xu F; Wang H; Zhan P; Shao X
    J Agric Food Chem; 2022 Nov; 70(45):14468-14479. PubMed ID: 36322824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ursolic acid, the main component of blueberry cuticular wax, inhibits Botrytis cinerea growth by damaging cell membrane integrity.
    Liu R; Zhang L; Xiao S; Chen H; Han Y; Niu B; Wu W; Gao H
    Food Chem; 2023 Jul; 415():135753. PubMed ID: 36870211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-Structural Alterations in
    Youssef K; Roberto SR; de Oliveira AG
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal mechanisms of volatile organic compounds produced by Pseudomonas fluorescens ZX as biological fumigants against Botrytis cinerea.
    Yue Y; Wang Z; Zhong T; Guo M; Huang L; Yang L; Kan J; Zalán Z; Hegyi F; Takács K; Du M
    Microbiol Res; 2023 Feb; 267():127253. PubMed ID: 36455309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata.
    Yalage Don SM; Schmidtke LM; Gambetta JM; Steel CC
    Res Microbiol; 2021; 172(1):103788. PubMed ID: 33049328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curcumin Induces Oxidative Stress in
    Hua C; Kai K; Bi W; Shi W; Liu Y; Zhang D
    J Agric Food Chem; 2019 Jul; 67(28):7968-7976. PubMed ID: 31062982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches.
    Fan L; Wei Y; Chen Y; Jiang S; Xu F; Zhang C; Wang H; Shao X
    Food Chem; 2023 Mar; 403():134419. PubMed ID: 36191421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavonoids from Sedum aizoon L. inhibit Botrytis cinerea by negatively affecting cell membrane lipid metabolism.
    Wang K; Zhang X; Shao X; Wei Y; Xu F; Wang H
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7139-7151. PubMed ID: 36201036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrolactin R from Bacillus siamensis and its antifungal activity against Botrytis cinerea.
    Ni J; Yu L; Li F; Li Y; Zhang M; Deng Y; Liu X
    World J Microbiol Biotechnol; 2023 Mar; 39(5):117. PubMed ID: 36918502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Honokiol suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing autophagic activities and apoptosis.
    Ma D; Cui X; Zhang Z; Li B; Xu Y; Tian S; Chen T
    Food Microbiol; 2020 Jun; 88():103411. PubMed ID: 31997759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the Mechanisms for the Plant Volatile Organic Compound Linalool To Control Gray Mold on Strawberry Fruits.
    Xu Y; Tong Z; Zhang X; Wang Y; Fang W; Li L; Luo Z
    J Agric Food Chem; 2019 Aug; 67(33):9265-9276. PubMed ID: 31361479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A.
    Xiao L; Niu HJ; Qu TL; Zhang XF; Du FY
    Pestic Biochem Physiol; 2021 Jun; 175():104834. PubMed ID: 33993959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of
    Hou H; Zhang X; Zhao T; Zhou L
    PeerJ; 2020; 8():e9626. PubMed ID: 32864206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action.
    Youssef K; de Oliveira AG; Tischer CA; Hussain I; Roberto SR
    Int J Biol Macromol; 2019 Dec; 141():247-258. PubMed ID: 31476398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of nanoemulsion of essential oils to control Botrytis cinerea on strawberry surface and prolong fruit shelf life.
    Javanmardi Z; Koushesh Saba M; Nourbakhsh H; Amini J
    Int J Food Microbiol; 2023 Jan; 384():109979. PubMed ID: 36260958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the antifungal and biochemical activities of mefentrifluconazole against Botrytis cinerea.
    Li T; Li H; Liu T; Zhu J; Zhang L; Mu W; Liu F
    Pestic Biochem Physiol; 2021 Mar; 173():104784. PubMed ID: 33771264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance.
    Rupp S; Plesken C; Rumsey S; Dowling M; Schnabel G; Weber RWS; Hahn M
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235878
    [No Abstract]   [Full Text] [Related]  

  • 20. [Mechanism of thymol inhibiting
    Yang K; Chen J; Xin AJ; Cai JX; Shi ZQ; Yang LF
    Ying Yong Sheng Tai Xue Bao; 2020 Jul; 31(7):2441-2448. PubMed ID: 32715711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.