These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36322933)

  • 1. High-Valent Ni Species Induced by Inactive MoO
    Huang X; He R; Wang S; Yang Y; Feng L
    Inorg Chem; 2022 Nov; 61(45):18318-18324. PubMed ID: 36322933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets for highly efficient and stable overall urea splitting.
    Xu H; Zhang WD; Yao Y; Yang J; Liu J; Gu ZG; Yan X
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):501-510. PubMed ID: 36174293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Ni decorated MoOx nanorod catalysts for efficient overall urea-water splitting.
    Li Z; Yang W; Xiong K; Chen J; Zhang H; Yang M; Gan X; Gao Y
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38828827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling Interface Constructions of FeNi
    Xu Q; Yu T; Chen J; Qian G; Song H; Luo L; Chen Y; Liu T; Wang Y; Yin S
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16355-16363. PubMed ID: 33797219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase and crystallinity regulations of Ni(OH)
    Cao Q; Yuan Y; Wang K; Huang W; Zhao Y; Sun X; Ding R; Lin W; Liu E; Gao P
    J Colloid Interface Sci; 2022 Jul; 618():411-418. PubMed ID: 35364542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting urea-assisted water splitting over P-MoO
    Yang X; Bu H; Qi R; Ye L; Song M; Chen Z; Ma F; Wang C; Zong L; Gao H; Zhan T
    J Colloid Interface Sci; 2024 Dec; 676():445-458. PubMed ID: 39033679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Atom Support Boosts Nickel-Catalyzed Urea Electrooxidation.
    Zheng X; Yang J; Li P; Jiang Z; Zhu P; Wang Q; Wu J; Zhang E; Sun W; Dou S; Wang D; Li Y
    Angew Chem Int Ed Engl; 2023 May; 62(22):e202217449. PubMed ID: 36959732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Understanding of the Nickel-Based Pre-Catalyst Effect on Urea Oxidation Reaction Activity.
    Liu H; Wang P; Qi X; Yin A; Wang Y; Ye Y; Luo J; Ren Z; Chen L; Yu S; Wei J
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni
    Ma K; Wang H; Kannan P; Subramanian P
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-organic framework-derived Ni@C and NiO@C as anode catalysts for urea fuel cells.
    Tran TQN; Park BJ; Yun WH; Duong TN; Yoon HH
    Sci Rep; 2020 Jan; 10(1):278. PubMed ID: 31937844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic Structure Modulation Via Iron-Incorporated NiO to Boost Urea Oxidation/Oxygen Evolution Reaction.
    He GY; He XF; Mu HY; Su R; Zhou Y; Meng C; Li FT; Chen XM
    Inorg Chem; 2024 Apr; 63(17):7937-7945. PubMed ID: 38629190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen Vacancy-rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction.
    Ji X; Zhang Y; Ma Z; Qiu Y
    ChemSusChem; 2020 Sep; 13(18):5004-5014. PubMed ID: 32662934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D Trimetal-organic framework derived metal carbon hybrid catalyst for urea electro-oxidation and 4-nitrophenol reduction.
    Gopi S; Perumal S; Al Olayan EM; AlAmri OD; Aloufi AS; Kathiresan M; Yun K
    Chemosphere; 2021 Mar; 267():129243. PubMed ID: 33338721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P-Induced Permeation of Nickel into WO
    Xu W; Zhu L; Sun Z; Xue H; Guo L; Feng Y; Li C; Li H; Wang Y; Liang Q; Sun HB
    ChemSusChem; 2022 Dec; 15(24):e202201584. PubMed ID: 36195829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient nanointerface hybridization in a nickel/cobalt oxide nanorod bundle structure for urea electrolysis.
    Wang S; Yang X; Liu Z; Yang D; Feng L
    Nanoscale; 2020 May; 12(19):10827-10833. PubMed ID: 32393925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Ni-Mo-P nanoarrays toward efficient urea oxidation reaction.
    Li J; Hu F; Hei J; Liu G; Wei H; Wang N; Wei H
    Dalton Trans; 2022 Dec; 51(47):18059-18067. PubMed ID: 36373745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese-doped molybdenum oxide boosts catalytic performance of electrocatalytic wet air oxidation at ambient temperature.
    Zhai LF; Chen ZX; Qi JX; Sun M
    J Hazard Mater; 2022 Apr; 428():128245. PubMed ID: 35051773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reaction of NO with metal oxides and urea supported on activated carbons at low temperature].
    Cui HF; Li CT; Lu P; Peng DL; Guo J; Chen L
    Huan Jing Ke Xue; 2010 Nov; 31(11):2575-81. PubMed ID: 21250435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density Functional Theory Investigation of the NiO@Graphene Composite as a Urea Oxidation Catalyst in the Alkaline Electrolyte.
    Lu S; Hummel M; Kang S; Pathak R; He W; Qi X; Gu Z
    ACS Omega; 2021 Jun; 6(22):14648-14654. PubMed ID: 34250329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxyanion-Sensitive Catalytic Activity of Ni(II)/Oxyanion Systems for Heterogeneous Organic Degradation: Differential Oxidizing Capacity of Ni(III) and Ni(IV) as High-Valent Intermediates.
    Oh H; Kim JY; Chae KH; Kim J; Yun ET; Lee Y; Lee C; Moon GH; Lee J
    Environ Sci Technol; 2024 Sep; 58(37):16642-16655. PubMed ID: 39226236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.