These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36322953)

  • 1. Foam-Based Electrophoretic Separation of Charged Dyes.
    Fauvel M; Trybala A; Tseluiko D; Starov VM; Bandulasena HCH
    Langmuir; 2022 Nov; 38(45):13935-13942. PubMed ID: 36322953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foam Separation of Dyes Using Anionic, Cationic, and Amphoteric Surfactants.
    Goto Y; Nema Y; Matsuoka K
    J Oleo Sci; 2020; 69(6):549-555. PubMed ID: 32522916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of Two-Dimensional Liquid Foams under Externally Applied Electric Fields.
    Fauvel M; Trybala A; Tseluiko D; Starov VM; Bandulasena HCH
    Langmuir; 2022 May; 38(20):6305-6321. PubMed ID: 35546544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Zwitterionic Rhodamine B Using Foam Separation.
    Goto Y; Nema Y; Matsuoka K
    J Oleo Sci; 2020; 69(6):563-567. PubMed ID: 32522917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges.
    Li J; Gong JL; Zeng GM; Zhang P; Song B; Cao WC; Liu HY; Huan SY
    J Colloid Interface Sci; 2018 Oct; 527():267-279. PubMed ID: 29800876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A disjoining pressure study of foam films stabilized by mixtures of nonionic and ionic surfactants.
    Buchavzov N; Stubenrauch C
    Langmuir; 2007 May; 23(10):5315-23. PubMed ID: 17402764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic Transport of a Charged Dye in a Freely Suspended Liquid Film: Experiments and Numerical Simulations.
    Hussein Sheik A; Montazersadgh F; Starov VM; Trybala A; Wijayantha KGU; Bandulasena HCH
    Langmuir; 2020 Feb; 36(5):1183-1191. PubMed ID: 31957457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel foam based separation strategy for extracting minute target impurities.
    Sadegh S; Dasarathy D; Ito Y
    J Sep Sci; 2019 Jun; 42(12):2093-2099. PubMed ID: 30968554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loading and Release of Charged and Neutral Fluorescent Dyes into and from Mesoporous Materials: A Key Role for Sensing Applications.
    Climent E; Hecht M; Rurack K
    Micromachines (Basel); 2021 Feb; 12(3):. PubMed ID: 33671037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imidazolium based ionic liquid stabilized foams for conformance control: bulk and porous scale investigation.
    Sakthivel S; Babu Salin R
    RSC Adv; 2021 Sep; 11(47):29711-29727. PubMed ID: 35479573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic molecular separation in nanoscale fluidic channels.
    Garcia AL; Ista LK; Petsev DN; O'Brien MJ; Bisong P; Mammoli AA; Brueck SR; López GP
    Lab Chip; 2005 Nov; 5(11):1271-6. PubMed ID: 16234951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixtures of n-dodecyl-beta-D-maltoside and hexaoxyethylene dodecyl ether--surface properties, bulk properties, foam films, and foams.
    Stubenrauch C; Claesson PM; Rutland M; Manev E; Johansson I; Pedersen JS; Langevin D; Blunk D; Bain CD
    Adv Colloid Interface Sci; 2010 Mar; 155(1-2):5-18. PubMed ID: 20080225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyurethane foam membranes filled with humic acid-chitosan crosslinked gels for selective and simultaneous removal of dyes.
    Yang HC; Gong JL; Zeng GM; Zhang P; Zhang J; Liu HY; Huan SY
    J Colloid Interface Sci; 2017 Nov; 505():67-78. PubMed ID: 28570853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.
    Shakir K; Elkafrawy AF; Ghoneimy HF; Elrab Beheir SG; Refaat M
    Water Res; 2010 Mar; 44(5):1449-61. PubMed ID: 19942250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated plastic microchip for enhancing electrophoretic separation using tunable pressure-driven backflows.
    Liu Y; Xia L; Xiao X; Li G
    Electrophoresis; 2022 Apr; 43(7-8):892-900. PubMed ID: 35020208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foam separation of Rhodamine-G and Evans Blue using a simple separatory bottle system.
    Dasarathy D; Ito Y
    J Chromatogr A; 2017 Sep; 1517():215-218. PubMed ID: 28851529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foam fractionation of per- and polyfluoroalkyl substances (PFASs) in landfill leachate using different cosurfactants.
    Vo PHN; Buckley T; Xu X; Nguyen TMH; Rudolph V; Shukla P
    Chemosphere; 2023 Jan; 310():136869. PubMed ID: 36272629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of electroosmotic and electrophoretic mobility of DNA and dyes in low ionic strength solutions.
    Lallman J; Flaugh R; Kounovsky-Shafer KL
    Electrophoresis; 2018 Mar; 39(5-6):862-868. PubMed ID: 28834563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Sensitive Membranes with Smart Cleaning Capability for Efficient Emulsion Separation and Pollutant Removal.
    Zhang J; Zhang X; Wei W; Zhang H; Wang Y; Cai G; Wu J
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33799551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.