BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 36323323)

  • 1. Land-use and climate risk assessment for Earth's remaining wilderness.
    Asamoah EF; Di Marco M; Watson JEM; Beaumont LJ; Venter O; Maina JM
    Curr Biol; 2022 Nov; 32(22):4890-4899.e4. PubMed ID: 36323323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wilderness areas in a changing landscape: changes in land use, land cover, and climate.
    Aycrigg JL; Mccarley TR; Belote RT; Martinuzzi S
    Ecol Appl; 2022 Jan; 32(1):e02471. PubMed ID: 34626517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.
    Jantz SM; Barker B; Brooks TM; Chini LP; Huang Q; Moore RM; Noel J; Hurtt GC
    Conserv Biol; 2015 Aug; 29(4):1122-1131. PubMed ID: 26129841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying ecosystem service value and potential loss of wilderness areas in China to support post-2020 global biodiversity conservation.
    Cao Y; Wang F; Tseng TH; Carver S; Chen X; Zhao J; Yu L; Li F; Zhao Z; Yang R
    Sci Total Environ; 2022 Nov; 846():157348. PubMed ID: 35842159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change.
    Carroll C; Ray JC
    Glob Chang Biol; 2021 Aug; 27(15):3395-3414. PubMed ID: 33852186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wilderness areas under threat from global redistribution of agriculture.
    Gardner AS; Trew BT; Maclean IMD; Sharma MD; Gaston KJ
    Curr Biol; 2023 Nov; 33(21):4721-4726.e2. PubMed ID: 37863061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined impacts of future climate-driven vegetation changes and socioeconomic pressures on protected areas in Africa.
    Martens C; Scheiter S; Midgley GF; Hickler T
    Conserv Biol; 2022 Dec; 36(6):e13968. PubMed ID: 35686508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Location and Protection Status of Earth's Diminishing Marine Wilderness.
    Jones KR; Klein CJ; Halpern BS; Venter O; Grantham H; Kuempel CD; Shumway N; Friedlander AM; Possingham HP; Watson JEM
    Curr Biol; 2018 Aug; 28(15):2506-2512.e3. PubMed ID: 30057308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerability of ecosystems to climate change moderated by habitat intactness.
    Eigenbrod F; Gonzalez P; Dash J; Steyl I
    Glob Chang Biol; 2015 Jan; 21(1):275-86. PubMed ID: 25059822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaps and opportunities for the World Heritage Convention to contribute to global wilderness conservation.
    Allan JR; Kormos C; Jaeger T; Venter O; Bertzky B; Shi Y; Mackey B; van Merm R; Osipova E; Watson JEM
    Conserv Biol; 2018 Feb; 32(1):116-126. PubMed ID: 28664996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renewable energy development threatens many globally important biodiversity areas.
    Rehbein JA; Watson JEM; Lane JL; Sonter LJ; Venter O; Atkinson SC; Allan JR
    Glob Chang Biol; 2020 May; 26(5):3040-3051. PubMed ID: 32133726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk from future climate change to Pakistan's protected area network: A composite analysis for hotspot identification.
    Siddique MT; García Molinos J
    Sci Total Environ; 2024 Mar; 916():169948. PubMed ID: 38211866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Future battlegrounds for conservation under global change.
    Lee TM; Jetz W
    Proc Biol Sci; 2008 Jun; 275(1640):1261-70. PubMed ID: 18302999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling.
    Di Marco M; Harwood TD; Hoskins AJ; Ware C; Hill SLL; Ferrier S
    Glob Chang Biol; 2019 Aug; 25(8):2763-2778. PubMed ID: 31009149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity.
    Hof C; Voskamp A; Biber MF; Böhning-Gaese K; Engelhardt EK; Niamir A; Willis SG; Hickler T
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13294-13299. PubMed ID: 30530689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global progress in incorporating climate adaptation into land protection for biodiversity since Aichi targets.
    Carrasco L; Papeş M; Sheldon KS; Giam X
    Glob Chang Biol; 2021 May; 27(9):1788-1801. PubMed ID: 33570817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renewable energy production will exacerbate mining threats to biodiversity.
    Sonter LJ; Dade MC; Watson JEM; Valenta RK
    Nat Commun; 2020 Sep; 11(1):4174. PubMed ID: 32873789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited co-benefits of protected areas in southwest China under current climate change and human modification.
    Wu H; Fang S; Yu L; Hu S; Chen X; Cao Y; Du Z; Shen X; Liu X; Ma K
    J Environ Manage; 2023 Mar; 330():117190. PubMed ID: 36603263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wilderness areas halve the extinction risk of terrestrial biodiversity.
    Di Marco M; Ferrier S; Harwood TD; Hoskins AJ; Watson JEM
    Nature; 2019 Sep; 573(7775):582-585. PubMed ID: 31534225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A "Global Safety Net" to reverse biodiversity loss and stabilize Earth's climate.
    Dinerstein E; Joshi AR; Vynne C; Lee ATL; Pharand-Deschênes F; França M; Fernando S; Birch T; Burkart K; Asner GP; Olson D
    Sci Adv; 2020 Sep; 6(36):. PubMed ID: 32917614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.