These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36323765)
1. Effects of vorticity on solitary waves. Nakayama K; Tani K; Yoshimura H; Fujita I Sci Rep; 2022 Nov; 12(1):18524. PubMed ID: 36323765 [TBL] [Abstract][Full Text] [Related]
2. Strongly nonlinear long gravity waves in uniform shear flows. Choi W Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026305. PubMed ID: 14525103 [TBL] [Abstract][Full Text] [Related]
3. Gravity-capillary waves in finite depth on flows of constant vorticity. Hsu HC; Francius M; Montalvo P; Kharif C Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160363. PubMed ID: 27956873 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear Dirac equation solitary waves in external fields. Mertens FG; Quintero NR; Cooper F; Khare A; Saxena A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046602. PubMed ID: 23214703 [TBL] [Abstract][Full Text] [Related]
5. Experimental evidence of solitary wave interaction in hertzian chains. Santibanez F; Munoz R; Caussarieu A; Job S; Melo F Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026604. PubMed ID: 21929125 [TBL] [Abstract][Full Text] [Related]
6. Highly nonlinear solitary waves in chains of ellipsoidal particles. Ngo D; Khatri D; Daraio C Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026610. PubMed ID: 21929131 [TBL] [Abstract][Full Text] [Related]
7. Stability of Solitary Waves and Vortices in a 2D Nonlinear Dirac Model. Cuevas-Maraver J; Kevrekidis PG; Saxena A; Comech A; Lan R Phys Rev Lett; 2016 May; 116(21):214101. PubMed ID: 27284659 [TBL] [Abstract][Full Text] [Related]
8. Numerical study of interfacial solitary waves propagating under an elastic sheet. Wang Z; Părău EI; Milewski PA; Vanden-Broeck JM Proc Math Phys Eng Sci; 2014 Aug; 470(2168):20140111. PubMed ID: 25104909 [TBL] [Abstract][Full Text] [Related]
9. How solitary waves collide in discrete granular alignments. Avalos E; Sen S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046607. PubMed ID: 19518371 [TBL] [Abstract][Full Text] [Related]
10. Solitary matter wave in spin-orbit-coupled Bose-Einstein condensates with helicoidal gauge potential. Li XX; Cheng RJ; Ma JL; Zhang AX; Xue JK Phys Rev E; 2021 Sep; 104(3-1):034214. PubMed ID: 34654141 [TBL] [Abstract][Full Text] [Related]
11. Vorticity wave interaction, Krein collision, and exceptional points in shear flow instabilities. Meng C; Guo Z Phys Rev E; 2023 Dec; 108(6-2):065109. PubMed ID: 38243468 [TBL] [Abstract][Full Text] [Related]
12. Scattering of sound by a vorticity filament: an experimental and numerical investigation. Manneville S; Roux P; Tanter M; Maurel A; Fink M; Bottausci F; Petitjeans P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036607. PubMed ID: 11308788 [TBL] [Abstract][Full Text] [Related]
13. The tripole vortex: Experimental evidence and explicit solutions. Kizner Z; Khvoles R Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016307. PubMed ID: 15324169 [TBL] [Abstract][Full Text] [Related]
14. How hertzian solitary waves interact with boundaries in a 1D granular medium. Job S; Melo F; Sokolow A; Sen S Phys Rev Lett; 2005 May; 94(17):178002. PubMed ID: 15904336 [TBL] [Abstract][Full Text] [Related]
15. Solitary waves in a granular chain of elastic spheres: Multiple solitary solutions and their stabilities. Liu ZG; Wang YS; Huang G Phys Rev E; 2019 Jun; 99(6-1):062904. PubMed ID: 31330644 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulations of vorticity banding of emulsions in shear flows. De Vita F; Rosti ME; Caserta S; Brandt L Soft Matter; 2020 Mar; 16(11):2854-2863. PubMed ID: 32107513 [TBL] [Abstract][Full Text] [Related]
17. Intermittency in two-dimensional turbulence with drag. Tsang YK; Ott E; Antonsen TM; Guzdar PN Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066313. PubMed ID: 16089873 [TBL] [Abstract][Full Text] [Related]
18. Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion. Grimshaw R; Stepanyants Y; Alias A Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150416. PubMed ID: 26997887 [TBL] [Abstract][Full Text] [Related]
19. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Ohkitani K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046304. PubMed ID: 12006010 [TBL] [Abstract][Full Text] [Related]
20. Solitary waves in a nonintegrable chain with double-well potentials. Katz S; Givli S Phys Rev E; 2019 Sep; 100(3-1):032209. PubMed ID: 31639911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]