BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 36323848)

  • 21. Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity.
    Huang H; Huang G; Tan Z; Hu Y; Shan L; Zhou J; Zhang X; Ma S; Lv W; Huang T; Liu Y; Wang D; Zhao X; Lin Y; Rong Z
    BMC Biol; 2022 Apr; 20(1):91. PubMed ID: 35468792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenine base editor engineering reduces editing of bystander cytosines.
    Jeong YK; Lee S; Hwang GH; Hong SA; Park SE; Kim JS; Woo JS; Bae S
    Nat Biotechnol; 2021 Nov; 39(11):1426-1433. PubMed ID: 34211162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A/C Simultaneous Conversion Using the Dual Base Editor in Human Cells.
    Zhang X; Guan Y; Li D
    Methods Mol Biol; 2023; 2606():63-72. PubMed ID: 36592308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting fidelity of adenine and cytosine base editors in mouse embryos.
    Lee HK; Willi M; Miller SM; Kim S; Liu C; Liu DR; Hennighausen L
    Nat Commun; 2018 Nov; 9(1):4804. PubMed ID: 30442934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Recent advances and applications of base editing systems].
    Xu X; Liu M
    Sheng Wu Gong Cheng Xue Bao; 2021 Jul; 37(7):2307-2321. PubMed ID: 34327897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos.
    Lee HK; Smith HE; Liu C; Willi M; Hennighausen L
    Commun Biol; 2020 Jan; 3(1):19. PubMed ID: 31925293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering a precise adenine base editor with minimal bystander editing.
    Chen L; Zhang S; Xue N; Hong M; Zhang X; Zhang D; Yang J; Bai S; Huang Y; Meng H; Wu H; Luan C; Zhu B; Ru G; Gao H; Zhong L; Liu M; Liu M; Cheng Y; Yi C; Wang L; Zhao Y; Song G; Li D
    Nat Chem Biol; 2023 Jan; 19(1):101-110. PubMed ID: 36229683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Base editors: development and applications in biomedicine.
    Liang Y; Chen F; Wang K; Lai L
    Front Med; 2023 Jun; 17(3):359-387. PubMed ID: 37434066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved cytosine base editors generated from TadA variants.
    Lam DK; Feliciano PR; Arif A; Bohnuud T; Fernandez TP; Gehrke JM; Grayson P; Lee KD; Ortega MA; Sawyer C; Schwaegerle ND; Peraro L; Young L; Lee SJ; Ciaramella G; Gaudelli NM
    Nat Biotechnol; 2023 May; 41(5):686-697. PubMed ID: 36624149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Cas12a and Cas9-mediated mutagenesis in tomato cells.
    Slaman E; Kottenhagen L; de Martines W; Angenent GC; de Maagd RA
    Sci Rep; 2024 Feb; 14(1):4508. PubMed ID: 38402312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects.
    Liang M; Sui T; Liu Z; Chen M; Liu H; Shan H; Lai L; Li Z
    Cells; 2020 Jul; 9(8):. PubMed ID: 32727031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA.
    Hu Z; Wang Y; Liu Q; Qiu Y; Zhong Z; Li K; Li W; Deng Z; Sun Y
    mBio; 2021 Apr; 12(2):. PubMed ID: 33879582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas nucleases and base editors for plant genome editing.
    Gürel F; Zhang Y; Sretenovic S; Qi Y
    aBIOTECH; 2020 Jan; 1(1):74-87. PubMed ID: 36305010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases.
    Wang W; Tian B; Pan Q; Chen Y; He F; Bai G; Akhunova A; Trick HN; Akhunov E
    Plant Biotechnol J; 2021 Dec; 19(12):2428-2441. PubMed ID: 34270168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-purity production and precise editing of DNA base editing ribonucleoproteins.
    Jang HK; Jo DH; Lee SN; Cho CS; Jeong YK; Jung Y; Yu J; Kim JH; Woo JS; Bae S
    Sci Adv; 2021 Aug; 7(35):. PubMed ID: 34452911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current Status and Challenges of DNA Base Editing Tools.
    Jeong YK; Song B; Bae S
    Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Progress on base editing systems].
    Zong Y; Gao CX
    Yi Chuan; 2019 Sep; 41(9):777-800. PubMed ID: 31549678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes.
    Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L
    CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.