These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36323877)

  • 21. Comparative transcriptomics and genomic analyses reveal differential gene expression related to
    Yang M; Zhou C; Yang H; Kuang R; Liu K; Huang B; Wei Y
    Front Plant Sci; 2022; 13():1038598. PubMed ID: 36618670
    [No Abstract]   [Full Text] [Related]  

  • 22. Transcriptome analysis provides insights into the bases of salicylic acid-induced resistance to anthracnose in sorghum.
    Sun X; Li A; Ma G; Zhao S; Liu L
    Plant Mol Biol; 2022 Sep; 110(1-2):69-80. PubMed ID: 35793006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in spatial and temporal gene expression during incompatible interaction between common bean and anthracnose pathogen.
    Borges A; Melotto M; Tsai SM; Gomes Caldas DG
    J Plant Physiol; 2012 Aug; 169(12):1216-20. PubMed ID: 22579040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean.
    Costa LC; Nalin RS; Dias MA; Ferreira ME; Song Q; Pastor-Corrales MA; Hurtado-Gonzales OP; de Souza EA
    Theor Appl Genet; 2021 Feb; 134(2):543-556. PubMed ID: 33130954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the
    Son S; Kim S; Lee KS; Oh J; Choi I; Do JW; Yoon JB; Han J; Choi D; Park SR
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum.
    Gelli M; Konda AR; Liu K; Zhang C; Clemente TE; Holding DR; Dweikat IM
    BMC Plant Biol; 2017 Jul; 17(1):123. PubMed ID: 28697783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus).
    Tullu A; Buchwaldt L; Warkentin T; Taran B; Vandenberg A
    Theor Appl Genet; 2003 Feb; 106(3):428-34. PubMed ID: 12589542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine mapping of the major anthracnose resistance QTL AnR
    Zhao Y; Liu Y; Zhang Z; Cao Y; Yu H; Ma W; Zhang B; Wang R; Gao J; Wang L
    BMC Plant Biol; 2020 May; 20(1):189. PubMed ID: 32357837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two loci in sorghum with NB-LRR encoding genes confer resistance to Colletotrichum sublineolum.
    Biruma M; Martin T; Fridborg I; Okori P; Dixelius C
    Theor Appl Genet; 2012 Apr; 124(6):1005-15. PubMed ID: 22143275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Candidate effectors contribute to race differentiation and virulence of the lentil anthracnose pathogen Colletotrichum lentis.
    Bhadauria V; MacLachlan R; Pozniak C; Banniza S
    BMC Genomics; 2015 Aug; 16(1):628. PubMed ID: 26296655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome Analysis of an Anthracnose-Resistant Tea Plant Cultivar Reveals Genes Associated with Resistance to Colletotrichum camelliae.
    Wang L; Wang Y; Cao H; Hao X; Zeng J; Yang Y; Wang X
    PLoS One; 2016; 11(2):e0148535. PubMed ID: 26849553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into the Host-Pathogen Interaction Pathways through RNA-Seq Analysis of
    Mishra GP; Aski MS; Bosamia T; Chaurasia S; Mishra DC; Bhati J; Kumar A; Javeria S; Tripathi K; Kohli M; Kumar RR; Singh AK; Devi J; Kumar S; Dikshit HK
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bulked segregant transcriptome analysis in pea identifies key expression markers for resistance to Peyronellaea pinodes.
    Fondevilla S; Krezdorn N; Rubiales D; Rotter B; Winter P
    Sci Rep; 2022 Oct; 12(1):18159. PubMed ID: 36307494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).
    Peng FY; Yang RC
    BMC Plant Biol; 2017 Jun; 17(1):108. PubMed ID: 28633642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haplotypes at the sorghum ARG4 and ARG5 NLR loci confer resistance to anthracnose.
    Habte N; Girma G; Xu X; Liao CJ; Adeyanju A; Hailemariam S; Lee S; Okoye P; Ejeta G; Mengiste T
    Plant J; 2024 Apr; 118(1):106-123. PubMed ID: 38111157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the defense-related gene
    Zhang Y; Yao JL; Feng H; Jiang J; Fan X; Jia YF; Wang R; Liu C
    Hereditas; 2019; 156():14. PubMed ID: 31057347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic Dissection of Anthracnose (
    Cruet-Burgos CM; Cuevas HE; Prom LK; Knoll JE; Stutts LR; Vermerris W
    G3 (Bethesda); 2020 Apr; 10(4):1403-1412. PubMed ID: 32102832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ANTHRACNOSE RESISTANCE GENE2 confers fungal resistance in sorghum.
    Mewa DB; Lee S; Liao CJ; Adeyanju A; Helm M; Lisch D; Mengiste T
    Plant J; 2023 Jan; 113(2):308-326. PubMed ID: 36441009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative expression analysis of resistant and susceptible Populus clones inoculated with Septoria musiva.
    Liang H; Staton M; Xu Y; Xu T; Leboldus J
    Plant Sci; 2014 Jun; 223():69-78. PubMed ID: 24767117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-Kingdom Gene Coexpression Analysis Using a 
    Cao Z; Banniza S
    Mol Plant Microbe Interact; 2021 Dec; 34(12):1365-1377. PubMed ID: 34890251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.