These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 36325489)

  • 21. Epigenetics and transgenerational inheritance in domesticated farm animals.
    Feeney A; Nilsson E; Skinner MK
    J Anim Sci Biotechnol; 2014; 5(1):48. PubMed ID: 25810901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism.
    Tran NQV; Miyake K
    Int J Genomics; 2017; 2017():7526592. PubMed ID: 28567415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early life nutrition and neuroendocrine programming.
    Vickers MH
    Neuropharmacology; 2022 Mar; 205():108921. PubMed ID: 34902348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental Origins of Disease: Emerging Prenatal Risk Factors and Future Disease Risk.
    Aris IM; Fleisch AF; Oken E
    Curr Epidemiol Rep; 2018 Sep; 5(3):293-302. PubMed ID: 30687591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adolescent epigenetic profiles and environmental exposures from early life through peri-adolescence.
    Goodrich JM; Dolinoy DC; Sánchez BN; Zhang Z; Meeker JD; Mercado-Garcia A; Solano-González M; Hu H; Téllez-Rojo MM; Peterson KE
    Environ Epigenet; 2016 Aug; 2(3):dvw018. PubMed ID: 29492298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multigenerational reproductive study of genistein (Cas No. 446-72-0) in Sprague-Dawley rats (feed study).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2008 Mar; (539):1-266. PubMed ID: 18685713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sex differences in the developmental origins of cardiometabolic disease following exposure to maternal obesity and gestational diabetes
    Talbot CPJ; Dolinsky VW
    Appl Physiol Nutr Metab; 2019 Jul; 44(7):687-695. PubMed ID: 30500266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetics and DOHaD: from basics to birth and beyond.
    Bianco-Miotto T; Craig JM; Gasser YP; van Dijk SJ; Ozanne SE
    J Dev Orig Health Dis; 2017 Oct; 8(5):513-519. PubMed ID: 28889823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental epigenetics and phytoestrogen/phytochemical exposures.
    Guerrero-Bosagna CM; Skinner MK
    J Steroid Biochem Mol Biol; 2014 Jan; 139():270-6. PubMed ID: 23274117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RISING STARS: Sex differences in toxicant-associated fatty liver disease.
    Wahlang B
    J Endocrinol; 2023 Jul; 258(1):. PubMed ID: 37074385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utility of preclinical models of altered maternal nutrition to support the developmental origins of health and disease hypothesis.
    Vickers MH
    Clin Sci (Lond); 2022 May; 136(10):711-714. PubMed ID: 35575180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paternal Environmental Toxicant Exposure and Risk of Adverse Pregnancy Outcomes.
    Bruner-Tran KL; Mokshagundam S; Barlow A; Ding T; Osteen KG
    Curr Obstet Gynecol Rep; 2019; 8(3):103-113. PubMed ID: 32953240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants.
    Wigle DT; Arbuckle TE; Turner MC; Bérubé A; Yang Q; Liu S; Krewski D
    J Toxicol Environ Health B Crit Rev; 2008 May; 11(5-6):373-517. PubMed ID: 18470797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetic perspective on the developmental effects of bisphenol A.
    Kundakovic M; Champagne FA
    Brain Behav Immun; 2011 Aug; 25(6):1084-93. PubMed ID: 21333735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early life nutrition, epigenetics and programming of later life disease.
    Vickers MH
    Nutrients; 2014 Jun; 6(6):2165-78. PubMed ID: 24892374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quality control and statistical modeling for environmental epigenetics: a study on in utero lead exposure and DNA methylation at birth.
    Goodrich JM; Sánchez BN; Dolinoy DC; Zhang Z; Hernández-Ávila M; Hu H; Peterson KE; Téllez-Rojo MM
    Epigenetics; 2015; 10(1):19-30. PubMed ID: 25580720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetic Programming of Adipose Tissue in the Progeny of Obese Dams.
    Lecoutre S; Kwok KHM; Petrus P; Lambert M; Breton C
    Curr Genomics; 2019 Sep; 20(6):428-437. PubMed ID: 32477000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sex-Dependent Effects of Developmental Lead Exposure on the Brain.
    Singh G; Singh V; Sobolewski M; Cory-Slechta DA; Schneider JS
    Front Genet; 2018; 9():89. PubMed ID: 29662502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetics as a Biomarker for Early-Life Environmental Exposure.
    Schrott R; Song A; Ladd-Acosta C
    Curr Environ Health Rep; 2022 Dec; 9(4):604-624. PubMed ID: 35907133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental epigenetics.
    Bollati V; Baccarelli A
    Heredity (Edinb); 2010 Jul; 105(1):105-12. PubMed ID: 20179736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.