These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature. Wu L; Ni B; Chen R; Shi C; Sun P; Chen T Nanoscale Adv; 2019 Nov; 1(11):4415-4421. PubMed ID: 36134405 [TBL] [Abstract][Full Text] [Related]
7. Anchoring IrPdAu Nanoparticles on NH Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879 [TBL] [Abstract][Full Text] [Related]
9. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction. Sun X; Ding Y; Feng G; Yao Q; Zhu J; Xia J; Lu ZH J Colloid Interface Sci; 2023 Sep; 645():676-684. PubMed ID: 37167916 [TBL] [Abstract][Full Text] [Related]
10. Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation. Zhou C; Zhang R; Hu J; Yao C; Liu Z; Duan A; Wang X J Colloid Interface Sci; 2024 Nov; 673():997-1006. PubMed ID: 39002361 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst. Li L; Chen X; Zhang C; Zhang G; Liu Z ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of AuPd nanoparticles anchored on TiO Jiang Y; Chen M; Yang Y; Zhang X; Xiao X; Fan X; Wang C; Chen L Nanotechnology; 2018 Aug; 29(33):335402. PubMed ID: 29794333 [TBL] [Abstract][Full Text] [Related]
13. Amine-functionalized Schiff base covalent organic frameworks supported PdAuIr nanoparticles as high-performance catalysts for formic acid dehydrogenation and hexavalent chromium reduction. Guo X; Di X; Tang T; Shi Y; Liu D; Wang W; Liu Z; Ji X; Shao X J Colloid Interface Sci; 2024 Mar; 658():362-372. PubMed ID: 38113545 [TBL] [Abstract][Full Text] [Related]
14. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Catalytic Performance of N-Doped Carbon Sphere-Supported Pd Nanoparticles by Secondary Nitrogen Source Regulation for Formic Acid Dehydrogenation. Deng M; Yang A; Ma J; Yang C; Cao T; Yang S; Yao M; Liu F; Wang X; Cao J ACS Appl Mater Interfaces; 2022 Apr; 14(16):18550-18560. PubMed ID: 35412790 [TBL] [Abstract][Full Text] [Related]
16. Immobilizing Extremely Catalytically Active Palladium Nanoparticles to Carbon Nanospheres: A Weakly-Capping Growth Approach. Zhu QL; Tsumori N; Xu Q J Am Chem Soc; 2015 Sep; 137(36):11743-8. PubMed ID: 26323169 [TBL] [Abstract][Full Text] [Related]
17. Ultrafine Pd Nanoparticles Supported on Soft Nitriding Porous Carbon for Hydrogen Production from Hydrolytic Dehydrogenation of Dimethyl Amine-Borane. Wen Z; Fu Q; Wu J; Fan G Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32824554 [TBL] [Abstract][Full Text] [Related]
18. Improved hydrogen evolution performance by engineering bimetallic AuPd loaded on amino and nitrogen functionalized mesoporous hollow carbon spheres. Wang L; Zhao Z; Wang H; Chi Y RSC Adv; 2022 Apr; 12(19):11732-11739. PubMed ID: 35481096 [TBL] [Abstract][Full Text] [Related]
19. Amine-Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid. Song L; Tan K; Ye Y; Zhu B; Zhang S; Huang W Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889634 [TBL] [Abstract][Full Text] [Related]
20. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid. Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]