BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36325800)

  • 1. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 1: Chlorine Chemistry in Seawater and Its Consequences in Terms of Biocidal Effectiveness and Environmental Impact.
    Kinani S; Roumiguières A; Bouchonnet S
    Crit Rev Anal Chem; 2022 Nov; ():1-14. PubMed ID: 36325800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 2: Sampling, Sample Preparation and Non-Chromatographic and Mass Spectrometric-Based Methods.
    Kinani S; Roumiguières A; Bouchonnet S
    Crit Rev Anal Chem; 2022 Oct; ():1-20. PubMed ID: 36288103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants in Seawater. Part 3: Chromatographic- and Mass Spectrometric-Based Methodologies.
    Roumiguières A; Bouchonnet S; Kinani S
    Crit Rev Anal Chem; 2023 Jun; ():1-15. PubMed ID: 37347617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-Term Guideline Values for Chlorine in Marine Waters.
    Batley GE; Simpson SL
    Environ Toxicol Chem; 2020 Apr; 39(4):754-764. PubMed ID: 31907965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorine toxicity to Navicula pelliculosa and Achnanthes spp. in a flow-through system: The use of immobilised microalgae and variable chlorophyll fluorescence.
    Vannoni M; Creach V; Barry J; Sheahan D
    Aquat Toxicol; 2018 Sep; 202():80-89. PubMed ID: 30007157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the formation of polyhalogenated carbazoles during seawater chlorination.
    Zhang M; Lin K
    Water Res; 2023 Jun; 238():120009. PubMed ID: 37146400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide.
    Cha HG; Seo MH; Lee HY; Lee JH; Lee DS; Shin K; Choi KH
    Mar Pollut Bull; 2015 Jun; 95(1):315-23. PubMed ID: 25841887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of operating conditions on disinfection by-product formation, calculated toxicity, and changes in organic matter structures during seawater chlorination.
    Liu J; Ling L; Hu Q; Wang C; Shang C
    Water Res; 2022 Jul; 220():118631. PubMed ID: 35635923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does chlorination of seawater reverse osmosis membranes control biofouling?
    Khan MT; Hong PY; Nada N; Croue JP
    Water Res; 2015 Jul; 78():84-97. PubMed ID: 25917390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling chlorine-produced oxidant demand and dilution in chlorinated combined sewer overflow discharges.
    Taterka A; Miskewitz R; Sharp RR; Patoczka J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(3):266-274. PubMed ID: 31724470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems.
    Liu C
    J Environ Sci (China); 2021 Dec; 110():140-149. PubMed ID: 34593185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and speciation of disinfection byproducts during chlor(am)ination of aquarium seawater.
    Zhang H; Dong H; Adams C; Qiang Z; Luan G; Wang L
    J Environ Sci (China); 2015 Jul; 33():116-24. PubMed ID: 26141884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and opportunities for on-line monitoring of chlorine-produced oxidants in seawater using portable membrane-introduction Fourier transform-ion cyclotron resonance mass spectrometry.
    Roumiguières A; Bouchonnet S; Kinani S
    Anal Bioanal Chem; 2021 Jan; 413(3):885-900. PubMed ID: 33211126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative treatment of NOM by selective oxidants in drinking water treatment and its impact on DBP formation in postchlorination.
    Li J; Song Y; Jiang J; Yang T; Cao Y
    Sci Total Environ; 2023 Feb; 858(Pt 2):159908. PubMed ID: 36336058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of organic chloramines during water disinfection: chlorination versus chloramination.
    Lee W; Westerhoff P
    Water Res; 2009 May; 43(8):2233-9. PubMed ID: 19269665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of bromide and iodide promotes the horizontal transfer of antibiotic resistance genes during chlorination: A preliminary study.
    Zhai H; Guo Y; Zhang L; Miao Y; Wang J
    Sci Total Environ; 2022 Nov; 846():157250. PubMed ID: 35817106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and mechanistic understanding of chlorite oxidation during chlorination: Optimization of ClO
    Rougé V; Lee Y; von Gunten U; Allard S
    Water Res; 2022 Jul; 220():118515. PubMed ID: 35700645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.
    Heeb MB; Criquet J; Zimmermann-Steffens SG; von Gunten U
    Water Res; 2014 Jan; 48():15-42. PubMed ID: 24184020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.