These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36325829)

  • 81. Targeting Anterior Corneal Astigmatism With Topography-Guided Ablation Ignores Ocular Residual Astigmatism, Resulting in Inferior Outcomes.
    Wallerstein A; Gauvin M; Cohen M
    J Refract Surg; 2020 Jan; 36(1):63-64. PubMed ID: 31917855
    [No Abstract]   [Full Text] [Related]  

  • 82. [Current methods of photorefractive keratectomy in correcting refractive errors].
    Vesaluoma M; Tuunanen T; Vannas A; Tervo T
    Duodecim; 1998; 114(11):1098-107. PubMed ID: 11544690
    [No Abstract]   [Full Text] [Related]  

  • 83. A Randomized Comparative Study of Topography-Guided Versus Wavefront-Optimized FS-LASIK for Correcting Myopia and Myopic Astigmatism.
    Zhang Y; Chen Y
    J Refract Surg; 2019 Sep; 35(9):575-582. PubMed ID: 31498415
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Scheimpflug analysis of corneal power changes after myopic excimer laser surgery.
    Savini G; Hoffer KJ; Carbonelli M; Barboni P
    J Cataract Refract Surg; 2013 Apr; 39(4):605-10. PubMed ID: 23465330
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Comparison of simulated keratometric changes induced by custom and conventional laser in situ keratomileusis after myopic ablation: retrospective chart review.
    Leng C; Feiz V; Modjtahedi B; Moshirfar M
    J Cataract Refract Surg; 2010 Sep; 36(9):1550-5. PubMed ID: 20692569
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Pediatric refractive surgery.
    Davidorf JM
    J Cataract Refract Surg; 2000 Nov; 26(11):1567-8. PubMed ID: 11185591
    [No Abstract]   [Full Text] [Related]  

  • 87. [Refractive surgery for hyperopia].
    Delbarre M; Le HM; Boucenna W; Froussart-Maille F
    J Fr Ophtalmol; 2021 May; 44(5):723-729. PubMed ID: 33836914
    [TBL] [Abstract][Full Text] [Related]  

  • 88. iSMART Contoura laser-assisted
    Khatib Z
    Indian J Ophthalmol; 2022 Mar; 70(3):1073. PubMed ID: 35225587
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Combined corneal topography and corneal wavefront data in the treatment of corneal irregularity and refractive error in LASIK or PRK using the Carl Zeiss Meditec MEL 80 and CRS-Master.
    Reinstein DZ; Archer TJ; Gobbe M
    J Refract Surg; 2009 Jun; 25(6):503-15. PubMed ID: 19603618
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Femtosecond laser-assisted in situ keratomileusis with topography-guided or asphericity-adjusted derived data: a comparative contralateral eye study.
    Alves EM; Lyra AF; TenĂ³rio M; Mesquita N; Bacelar C; Montenegro A; Alves L; Alves M
    BMC Ophthalmol; 2022 Apr; 22(1):189. PubMed ID: 35468752
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Topography-driven photorefractive keratectomy: results of corneal interactive programmed topographic ablation software.
    Alessio G; Boscia F; La Tegola MG; Sborgia C
    Ophthalmology; 2000 Aug; 107(8):1578-87. PubMed ID: 10919913
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Treatment of myopia and myopic astigmatism by customized laser in situ keratomileusis based on corneal topography.
    Knorz MC; Neuhann T
    Ophthalmology; 2000 Nov; 107(11):2072-6. PubMed ID: 11054333
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Biomechanical customization: the next generation of laser refractive surgery.
    Roberts C
    J Cataract Refract Surg; 2005 Jan; 31(1):2-5. PubMed ID: 15721669
    [No Abstract]   [Full Text] [Related]  

  • 94. A mathematical model for laser in situ keratomileusis and photorefractive keratectomy.
    Lieberman DM; Grierson JW
    J Refract Surg; 2000; 16(2):177-86. PubMed ID: 10766387
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Predictability and Vector Analysis of Laser In Situ Keratomileusis for Residual Errors in Eyes Implanted With Different Multifocal Intraocular Lenses.
    Santhiago MR; Ventura BV; Ghanem RC; Kara-Junior N; Moraes HV; Ghanem E
    Cornea; 2016 Nov; 35(11):1404-1409. PubMed ID: 27617868
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The prediction of surgically induced refractive change from corneal topography.
    Smith RJ; Chan WK; Maloney RK
    Am J Ophthalmol; 1998 Jan; 125(1):44-53. PubMed ID: 9437312
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Topography-Guided LASIK Versus Small Incision Lenticule Extraction (SMILE) for Myopia and Myopic Astigmatism: A Randomized, Prospective, Contralateral Eye Study.
    Kanellopoulos AJ
    J Refract Surg; 2017 May; 33(5):306-312. PubMed ID: 28486721
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Unwanted Astigmatism and High-order Aberrations One Year after Excimer and Femtosecond Corneal Surgery.
    Bohac M; Koncarevic M; Dukic A; Biscevic A; Cerovic V; Merlak M; Gabric N; Patel S
    Optom Vis Sci; 2018 Nov; 95(11):1064-1076. PubMed ID: 30339639
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery.
    Hong X; Thibos LN
    J Refract Surg; 2000; 16(5):S647-50. PubMed ID: 11019891
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Topographic stability after hyperopic LASIK.
    de Ortueta D; Arba Mosquera S
    J Refract Surg; 2010 Aug; 26(8):547-54. PubMed ID: 20205358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.