These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36326080)
1. ACP_MS: prediction of anticancer peptides based on feature extraction. Zhou C; Peng D; Liao B; Jia R; Wu F Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080 [TBL] [Abstract][Full Text] [Related]
2. ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types. Deng H; Ding M; Wang Y; Li W; Liu G; Tang Y Comput Biol Med; 2023 May; 158():106844. PubMed ID: 37058760 [TBL] [Abstract][Full Text] [Related]
3. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer. Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672 [TBL] [Abstract][Full Text] [Related]
4. ACP-ESM: A novel framework for classification of anticancer peptides using protein-oriented transformer approach. Kilimci ZH; Yalcin M Artif Intell Med; 2024 Oct; 156():102951. PubMed ID: 39173421 [TBL] [Abstract][Full Text] [Related]
5. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410 [TBL] [Abstract][Full Text] [Related]
6. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291 [TBL] [Abstract][Full Text] [Related]
7. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation. Chen XG; Zhang W; Yang X; Li C; Chen H Front Genet; 2021; 12():698477. PubMed ID: 34276801 [TBL] [Abstract][Full Text] [Related]
8. ACP-ML: A sequence-based method for anticancer peptide prediction. Bian J; Liu X; Dong G; Hou C; Huang S; Zhang D Comput Biol Med; 2024 Mar; 170():108063. PubMed ID: 38301519 [TBL] [Abstract][Full Text] [Related]
9. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning. Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420 [TBL] [Abstract][Full Text] [Related]
10. ACP-PDAFF: Pretrained model and dual-channel attentional feature fusion for anticancer peptides prediction. Wang X; Wang S Comput Biol Chem; 2024 Oct; 112():108141. PubMed ID: 38996756 [TBL] [Abstract][Full Text] [Related]
11. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Arif M; Musleh S; Fida H; Alam T Sci Rep; 2024 Jul; 14(1):16992. PubMed ID: 39043738 [TBL] [Abstract][Full Text] [Related]
12. Effective identification and differential analysis of anticancer peptides. Zhang L; Hu X; Xiao K; Kong L Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816 [TBL] [Abstract][Full Text] [Related]
13. mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations. Sangaraju VK; Pham NT; Wei L; Yu X; Manavalan B J Mol Biol; 2024 Sep; 436(17):168687. PubMed ID: 39237191 [TBL] [Abstract][Full Text] [Related]
14. ACP-check: An anticancer peptide prediction model based on bidirectional long short-term memory and multi-features fusion strategy. Zhu L; Ye C; Hu X; Yang S; Zhu C Comput Biol Med; 2022 Sep; 148():105868. PubMed ID: 35868046 [TBL] [Abstract][Full Text] [Related]
15. ACP-GBDT: An improved anticancer peptide identification method with gradient boosting decision tree. Li Y; Ma D; Chen D; Chen Y Front Genet; 2023; 14():1165765. PubMed ID: 37065496 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides. Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203 [TBL] [Abstract][Full Text] [Related]
17. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides. Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753 [TBL] [Abstract][Full Text] [Related]
18. Integrating multiple sequence features for identifying anticancer peptides. Zou H; Yang F; Yin Z Comput Biol Chem; 2022 Aug; 99():107711. PubMed ID: 35667299 [TBL] [Abstract][Full Text] [Related]
19. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning. Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073 [TBL] [Abstract][Full Text] [Related]
20. MA-PEP: A novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism. Liang X; Zhao H; Wang J Protein Sci; 2024 Apr; 33(4):e4966. PubMed ID: 38532681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]